%I #4 Oct 18 2020 22:36:33
%S 3,7,13,19,23,29,37,43,53,61,71,73,79,89,97,101,107,113,131,137,139,
%T 151,163,173,181,193,197,199,223,229,233,239,251,263,269,271,281,293,
%U 311,317,337,349,359,373,379,383,397,409,421,433,443,457,463,479,491
%N Primes p(n) such that gcd(n, prime(n)+prime(n+2)) > 1.
%C This sequence and A336376 partition the set of primes.
%e In the following table, p(n) = A000040(n) = prime(n).
%e n p(n) p(n)+p(n+2) gcd
%e 1 2 7 1
%e 2 3 10 2
%e 3 5 16 1
%e 4 7 20 4
%e 5 11 28 1
%e 6 13 32 2
%e 1 and 3 are in A336374; 2 and 4 are in A336375; 2 and 5 are in A336376; 3 and 7 are in A336377.
%t p[n_] := Prime[n];
%t u = Select[Range[200], GCD[#, p[#] + p[# + 2]] == 1 &] (* A336374 *)
%t v = Select[Range[200], GCD[#, p[#] + p[# + 2]] > 1 &] (* A336375 *)
%t Prime[u] (* A336376 *)
%t Prime[v] (* A336377 *)
%Y Cf. A000040, A336366, A336374, A336375, A336376.
%K nonn
%O 1,1
%A _Clark Kimberling_, Oct 06 2020