login
Numbers k such that gcd(k, prime(k) + prime(k-1)) = 1.
3

%I #16 Jul 19 2023 15:16:45

%S 2,3,5,7,11,17,19,23,25,29,31,33,35,37,41,43,47,49,53,55,59,61,67,71,

%T 73,75,77,79,83,85,87,89,91,97,101,103,107,109,111,113,119,125,127,

%U 131,133,137,139,143,145,149,151,155,157,161,163,165,167,169,171

%N Numbers k such that gcd(k, prime(k) + prime(k-1)) = 1.

%e In the following table, p(k) = A000040(k) = prime(k).

%e k p(k) p(k)+p(k-1) gcd

%e 2 3 5 1

%e 3 5 8 1

%e 4 7 12 4

%e 5 11 18 1

%e 6 13 24 6

%e 2 and 3 are in this sequence; 4 and 6 are in A336371; 3 and 5 are in A336372; 7 and 13 are in A336373.

%t p[n_] := Prime[n];

%t u = Select[Range[2, 200], GCD[#, p[#] + p[# - 1]] == 1 &] (* this sequence *)

%t v = Select[Range[2, 200], GCD[#, p[#] + p[# - 1]] > 1 &] (* A336371 *)

%t Prime[u] (* A336372 *)

%t Prime[v] (* A336373 *)

%Y Cf. A000040, A001043, A336366, A336371, A336372, A336373.

%K nonn

%O 1,1

%A _Clark Kimberling_, Oct 04 2020

%E Offset corrected by _Mohammed Yaseen_, Jun 02 2023