login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Table read by antidiagonals: T(n, k) = digitsum(n*k) with n >= 0 and k >= 0.
3

%I #26 Aug 21 2020 22:52:10

%S 0,0,0,0,1,0,0,2,2,0,0,3,4,3,0,0,4,6,6,4,0,0,5,8,9,8,5,0,0,6,1,3,3,1,

%T 6,0,0,7,3,6,7,6,3,7,0,0,8,5,9,2,2,9,5,8,0,0,9,7,3,6,7,6,3,7,9,0,0,1,

%U 9,6,10,3,3,10,6,9,1,0,0,2,2,9,5,8,9,8,5,9,2,2,0

%N Table read by antidiagonals: T(n, k) = digitsum(n*k) with n >= 0 and k >= 0.

%H <a href="/index/Su#sum_of_digits">Index entries for sequences related to sum of digits</a>.

%F T(n, k) = A007953(A004247(n, k)).

%F T(n, 1) = T(1, n) = A007953(n).

%F T(n, 2) = T(2, n) = A004092(n).

%F T(n, k) = A007953(A003991(n, k)) for n*k > 0. - _Michel Marcus_, Jul 13 2020.

%e The table T(n, k) begins

%e 0 0 0 0 0 0 0 0 ...

%e 0 1 2 3 4 5 6 7 ...

%e 0 2 4 6 8 1 3 5 ...

%e 0 3 6 9 3 6 9 3 ...

%e 0 4 8 3 7 2 6 10 ...

%e 0 5 1 6 2 7 3 8 ...

%e 0 6 3 9 6 3 9 6 ...

%e 0 7 5 3 10 8 6 13 ...

%e ...

%t T[n_,k_]:=Total[IntegerDigits[n*k]]; Table[T[n-k,k],{n,0,12},{k,0,n}]//Flatten

%o (PARI) T(n, k) = sumdigits(n*k);

%Y Cf. A003991, A004092, A004159 (diagonal), A004164 (digitsum of n^3), A004247, A007953, A055565 (digitsum of n^4), A055566 (digitsum of n^5), A055567 (digitsum of n^6).

%K nonn,base,tabl,easy

%O 0,8

%A _Stefano Spezia_, Jul 12 2020