login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that there are exactly three powerful numbers between k^2 and (k+1)^2.
5

%I #12 Sep 15 2024 22:01:48

%S 31,36,67,93,132,140,145,161,166,189,192,220,223,265,280,290,296,311,

%T 316,322,364,384,407,468,537,576,592,602,623,639,644,656,659,661,670,

%U 690,722,769,771,793,828,883,888,890,896,950,961,981,984,987,992,995,1018

%N Numbers k such that there are exactly three powerful numbers between k^2 and (k+1)^2.

%C Positions of 3's in A119241.

%C Shiu (1980) proved that this sequence has an asymptotic density = 0.0770... A more accurate calculation using his formula gives 0.0770742722233...

%D József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter VI, p. 226.

%H Amiram Eldar, <a href="/A336178/b336178.txt">Table of n, a(n) for n = 1..10000</a>

%H P. Shiu, <a href="https://doi.org/10.1112/S0025579300010056">On the number of square-full integers between successive squares</a>, Mathematika, Vol. 27, No. 2 (1980), pp. 171-178.

%e 31 is a term since there are exactly three powerful numbers, 968 = 2^3 * 11^2, 972 = 2^2 * 3^5 and 1000 = 2^3 * 5^3 between 31^2 = 961 and (31+1)^2 = 1024.

%t powQ[n_] := (n == 1) || Min @@ FactorInteger[n][[;; , 2]] > 1; Select[Range[1000], Count[Range[#^2 + 1, (# + 1)^2 - 1], _?powQ] == 3 &]

%o (Python)

%o from functools import lru_cache

%o from math import isqrt

%o from sympy import mobius, integer_nthroot

%o def A336178(n):

%o def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o @lru_cache(maxsize=None)

%o def g(x):

%o c, l = 0, 0

%o j = isqrt(x)

%o while j>1:

%o k2 = integer_nthroot(x//j**2,3)[0]+1

%o w = squarefreepi(k2-1)

%o c += j*(w-l)

%o l, j = w, isqrt(x//k2**3)

%o c += squarefreepi(integer_nthroot(x,3)[0])-l

%o return c

%o def f(x):

%o c, a = n+x, 1

%o for k in range(1,x+1):

%o b = g((k+1)**2)

%o if b == a+4:

%o c -= 1

%o a = b

%o return c

%o return bisection(f,n,n) # _Chai Wah Wu_, Sep 14 2024

%Y Cf. A001694, A119241, A119242, A336175, A336176, A336177.

%K nonn

%O 1,1

%A _Amiram Eldar_, Jul 10 2020