Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jul 13 2020 07:54:41
%S 1,2,3,2,4,5,6,2,7,8,9,5,10,11,12,2,13,14,15,8,16,17,18,5,19,20,21,11,
%T 22,23,24,2,25,26,27,14,28,29,30,8,31,32,33,17,34,35,36,5,37,38,39,20,
%U 40,41,42,11,43,44,45,23,46,47,48,2,49,50,51,26,52,53,54,14,55,56,34,29,57,58,59,8,60,61,62,32,63,64,65,17,66,67,68,35,69,70,71,5,72,27,73,38,74,75,76,20,77
%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A278221(i) = A278221(j) and A278222(i) = A278222(j), for all i, j >= 1.
%C Restricted growth sequence transform of the ordered pair [A278221(n), A278222(n)], i.e., of the ordered pair [A046523(A122111(n)), A046523(A005940(1+n))].
%C For all i, j: A336146(i) = A336146(j) => a(i) = a(j) => A035531(i) = A035531(j).
%H Antti Karttunen, <a href="/A336149/b336149.txt">Table of n, a(n) for n = 1..65537</a>
%o (PARI)
%o up_to = 65537;
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
%o A278221(n) = A046523(A122111(n));
%o A278222(n) = A046523(A005940(1+n));
%o Aux336149(n) = [A278221(n),A278222(n)];
%o v336149 = rgs_transform(vector(up_to, n, Aux336149(n)));
%o A336149(n) = v336149[n];
%Y Cf. A005940, A046523, A064989, A122111, A278221, A278222.
%Y Cf. also A035531, A286621, A286622, A324400, A336146, A336148, A336159.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jul 12 2020