%I #9 Jul 14 2020 05:38:31
%S 1,1,1,2,1,2,2,4,1,2,2,5,2,4,5,12,1,2,2,5,2,5,4,13,2,4,5,13,5,13,13,
%T 43,1,2,2,5,2,5,5,13,2,5,4,14,5,13,14,42,2,4,5,13,5,14,13,43,5,13,14,
%U 45,14,44,44,160,1,2,2,5,2,5,5,14,2,5,5,14,4,13
%N Number of set partitions of the binary indices of n with distinct block-sums.
%C A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%H Gus Wiseman, <a href="/A038041/a038041.txt">Sequences counting and ranking multiset partitions whose part lengths, sums, or averages are constant or strict.</a>
%e The a(n) set partitions for n = 3, 7, 11, 15, 23:
%e {12} {123} {124} {1234} {1235}
%e {1}{2} {1}{23} {1}{24} {1}{234} {1}{235}
%e {13}{2} {12}{4} {12}{34} {12}{35}
%e {1}{2}{3} {14}{2} {123}{4} {123}{5}
%e {1}{2}{4} {124}{3} {125}{3}
%e {13}{24} {13}{25}
%e {134}{2} {135}{2}
%e {1}{2}{34} {15}{23}
%e {1}{23}{4} {1}{2}{35}
%e {1}{24}{3} {1}{25}{3}
%e {14}{2}{3} {13}{2}{5}
%e {1}{2}{3}{4} {15}{2}{3}
%e {1}{2}{3}{5}
%t bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t Table[Length[Select[sps[bpe[n]],UnsameQ@@Total/@#&]],{n,0,100}]
%Y The version for twice-partitions is A271619.
%Y The version for partitions of partitions is (also) A271619.
%Y These set partitions are counted by A275780.
%Y The version for factorizations is A321469.
%Y The version for normal multiset partitions is A326519.
%Y The version for equal block-sums is A336137.
%Y Set partitions with distinct block-lengths are A007837.
%Y Set partitions of binary indices are A050315.
%Y Twice-partitions with equal sums are A279787.
%Y Partitions of partitions with equal sums are A305551.
%Y Normal multiset partitions with equal block-lengths are A317583.
%Y Multiset partitions with distinct block-sums are ranked by A326535.
%Y Cf. A000110, A032011, A035470, A131632, A321455, A326026, A326514, A326517, A326518, A326534, A326565.
%K nonn
%O 0,4
%A _Gus Wiseman_, Jul 12 2020