login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of refactorable divisors of n.
11

%I #30 Nov 28 2021 10:24:49

%S 1,2,1,2,1,2,1,3,2,2,1,3,1,2,1,3,1,4,1,2,1,2,1,5,1,2,2,2,1,2,1,3,1,2,

%T 1,6,1,2,1,4,1,2,1,2,2,2,1,5,1,2,1,2,1,4,1,4,1,2,1,4,1,2,2,3,1,2,1,2,

%U 1,2,1,9,1,2,1,2,1,2,1,5,2,2,1,4,1,2,1,4,1,4,1,2

%N Number of refactorable divisors of n.

%C Inverse Möbius transform of A336040. - _Antti Karttunen_, Nov 24 2021

%H Antti Karttunen, <a href="/A336041/b336041.txt">Table of n, a(n) for n = 1..65537</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RefactorableNumber.html">Refactorable Number</a>

%F a(n) = Sum_{d|n} c(d), where c(n) is the refactorable characteristic of n (A336040).

%F a(n) = Sum_{d|n} (1 - ceiling(d/tau(d)) + floor(d/tau(d))), where tau(n) is the number of divisors of n (A000005).

%F a(n) = A000005(n) - A349658(n). - _Antti Karttunen_, Nov 24 2021

%F a(p) = 1 for odd primes p. - _Wesley Ivan Hurt_, Nov 28 2021

%e a(6) = 2; The divisors of 6 are {1,2,3,6}. Only two of these divisors are refactorable since d(1) = 1|1 and d(2) = 2|2, but d(3) = 2 does not divide 3 and d(6) = 4 does not divide 6.

%e a(7) = 1; The divisors of 7 are {1,7} and d(1) = 1|1, but d(7) = 2 does not divide 7, so a(7) = 1.

%e a(8) = 3; The divisors of 8 are {1,2,4,8}. 1, 2 and 8 are refactorable since d(1) = 1|1, d(2) = 2|2 and d(8) = 4|8 but d(4) = 3 does not divide 4, so a(8) = 3.

%e a(9) = 2; The divisors of 9 are {1,3,9}. 1 and 9 are refactorable since d(1) = 1|1 and d(9) = 3|9 but d(3) = 2 does not divide 3. Thus, a(9) = 2.

%p A336041 := proc(n)

%p local a ;

%p a := 0 ;

%p for d in numtheory[divisors](n) do

%p if type(d/numtheory[tau](d),integer) then

%p a := a+1 ;

%p end if;

%p end do:

%p a ;

%p end proc:

%p seq(A336041(n),n=1..30) ; # _R. J. Mathar_, Nov 24 2020

%t a[n_] := DivisorSum[n, 1 &, Divisible[#, DivisorSigma[0, #]] &]; Array[a, 100] (* _Amiram Eldar_, Jul 08 2020 *)

%o (PARI) a(n) = sumdiv(n, d, d%numdiv(d) == 0); \\ _Michel Marcus_, Jul 07 2020

%Y Cf. A000005 (tau), A033950 (refactorable numbers), A336040 (refactorable characteristic), A349658 (number of nonrefactorable divisors).

%Y Cf. also A335182, A335665.

%K nonn,easy

%O 1,2

%A _Wesley Ivan Hurt_, Jul 07 2020