Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Aug 13 2021 21:24:33
%S 1,1,1,1,1,2,5,15,53,222,1115,6698,47243,382187,3480048,35251942,
%T 394839407,4875966656,66282636371,989985346269,16198580140543,
%U 289168351452220,5604120791540468,117309414122840454,2639927837211705159,63618153549702851338
%N a(0) = a(1) = a(2) = 1; a(n) = Sum_{k=0..n-3} Stirling2(n-3,k) * a(k).
%C Shifts left 3 places under Stirling transform.
%H Michael De Vlieger, <a href="/A336020/b336020.txt">Table of n, a(n) for n = 0..371</a>
%H Ronald Orozco López, <a href="https://www.researchgate.net/publication/350397609_Solution_of_the_Differential_Equation_ykeay_Special_Values_of_Bell_Polynomials_and_ka-Autonomous_Coefficients">Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients</a>, Universidad de los Andes (Colombia 2021).
%F E.g.f. A(x) satisfies A(x) = 1 + x + x^2/2 + Integral( Integral( Integral A(exp(x) - 1) dx) dx) dx.
%p b:= proc(n, m) option remember; `if`(n=0,
%p a(m), m*b(n-1, m)+b(n-1, m+1))
%p end:
%p a:= n-> `if`(n<3, 1, b(n-3, 0)):
%p seq(a(n), n=0..25); # _Alois P. Heinz_, Aug 13 2021
%t a[0] = a[1] = a[2] = 1; a[n_] := a[n] = Sum[StirlingS2[n - 3, k] a[k], {k, 0, n - 3}]; Table[a[n], {n, 0, 25}]
%t nmax = 25; A[_] = 0; Do[A[x_] = 1 + x + x^2/2 + Integrate[Integrate[Integrate[A[Exp[x] - 1 + O[x]^(nmax + 1)], x], x], x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] Range[0, nmax]!
%o (PARI) lista(nn) = {my(va = vector(nn, k, 1)); for (n=4, nn, va[n] = sum(k=0, n-3, stirling(n-4, k, 2)*va[k+1]);); va;} \\ _Michel Marcus_, Jul 06 2020
%Y Cf. A003659, A007469, A336021, A336022.
%K nonn
%O 0,6
%A _Ilya Gutkovskiy_, Jul 05 2020