login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Product_{p prime, p == 1 (mod 4)} (1 - 2/p^2).
18

%I #33 Aug 10 2022 08:48:59

%S 8,9,4,8,4,1,2,2,4,5,6,2,4,8,8,1,7,0,7,2,5,6,6,1,5,0,6,9,0,8,4,3,7,3,

%T 2,1,9,8,7,5,4,7,8,0,8,9,2,0,7,1,8,9,7,2,6,0,1,7,9,9,4,2,7,6,1,6,5,6,

%U 3,8,9,2,2,1,2,0,9,1,5,5,0,2,8,8,5,9,4,2,9,1,0,5,3,9,5,8,9,1,0,8,0,0,3,3,2,2

%N Decimal expansion of Product_{p prime, p == 1 (mod 4)} (1 - 2/p^2).

%C The asymptotic density of the numbers k such that k^2+1 is squarefree (A049533) (Estermann, 1931).

%C The constant c in Sum_{k=0..n} phi(k^2 + 1) = A333170(n) ~ (1/4)*c*n^3 (Finch, 2018).

%C The constant c in Sum_{k=0..n} phi(k^2 + 1)/(k^2 + 1) = (3/4)*c*n + O(log(n)^2) (Postnikov, 1988).

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 101.

%D Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 166.

%D A. G. Postnikov, Introduction to Analytic Number Theory, Amer. Math. Soc., 1988, pp. 192-195.

%H Theodor Estermann, <a href="https://doi.org/10.1007/BF01455836">Einige Sätze über quadratfreie Zahlen</a>, Mathematische Annalen, Vol. 105 (1931), pp. 653-662, <a href="https://eudml.org/doc/159528">alternative link</a>.

%H Steven R. Finch, <a href="https://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020, p. 14.

%H D. R. Heath-Brown, <a href="https://doi.org/10.4064/aa155-1-1">Square-free values of n^2 + 1</a>, Acta Arithmetica, Vol. 155, No. 1 (2012), pp. 1-13.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and Prime Zeta Modulo functions for small moduli</a>, arXiv:1008.2547 [math.NT], variable F(m=4,n=1,s=2), p. 38.

%H Wolfgang Schwarz, <a href="https://doi.org/10.1007/BF01418877">Über die Summe Sigma_{n <= x} phi(f)(n) und verwandte Probleme</a>, Monatshefte für Mathematik, Vol. 66, No. 1 (1962), pp. 43-54, <a href="https://eudml.org/doc/177151">alternative link</a>.

%H Radoslav Tsvetkov, <a href="http://nntdm.net/volume-25-2019/number-3/207-222/">On the distribution of k-free numbers and r-tuples of k-free numbers. A survey</a>, Notes on Number Theory and Discrete Mathematics, Vol. 25, No. 3 (2019), pp. 207-222.

%F Equals 2*A065474/A340617.

%e 0.89484122456248817072566150690843732198754780892071...

%p Digits := 150;

%p with(NumberTheory);

%p DirichletBeta := proc(s) (Zeta(0, s, 1/4) - Zeta(0, s, 3/4))/4^s; end proc;

%p alfa := proc(s) DirichletBeta(s)*Zeta(s)/((1 + 1/2^s)*Zeta(2*s)); end proc;

%p beta := proc(s) (1 - 1/2^s)*Zeta(s)/DirichletBeta(s); end proc;

%p pzetamod41 := proc(s, terms) 1/2*Sum(Moebius(2*j + 1)*log(alfa((2*j + 1)*s))/(2*j + 1), j = 0..terms); end proc;

%p evalf(exp(-Sum(2^t*pzetamod41(2*t, 50)/t, t = 1..200))); # _Vaclav Kotesovec_, Jan 13 2021

%t f[p_] := If[Mod[p, 4] == 1, 1 - 2/p^2, 1]; RealDigits[N[Product[f[Prime[i]], {i, 1, 10^6}], 10], 10, 8][[1]] (* for calculating only the first few terms *)

%t (* -------------------------------------------------------------------------- *)

%t S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);

%t P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];

%t Z2[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = 2^w * P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);

%t $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z2[4, 1, 2], digits]], 10, digits-1][[1]] (* _Vaclav Kotesovec_, Jan 15 2021 *)

%o (PARI) f(lim,poly=1-'x-'x^2/2)=prodeulerrat(subst(poly,'x,1/'x^2))*prodeuler(p=2,lim, my(pm2=1./p^2); if(p%4==1,1.-2*pm2,1.)/subst(poly,'x,pm2)) \\ Gets 14 digits at lim=1e9; _Charles R Greathouse IV_, Aug 10 2022

%Y Cf. A002144, A049533, A065474, A069987, A088539, A333169, A333170, A340617.

%K nonn,cons

%O 0,1

%A _Amiram Eldar_, Jul 01 2020

%E More digits (from the paper by _R. J. Mathar_) added by _Jon E. Schoenfield_, Jan 12 2021

%E More digits from _Vaclav Kotesovec_, Jan 13 2021