Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jul 06 2020 07:41:07
%S 1,2,10,110,2154,65902,2903446,174109546,13636888810,1351801926542,
%T 165434393561910,24497621303302666,4317170011370444982,
%U 892891315599103615082,214174328063904077240962,58974283594413521123672110,18476316023495768160707616490
%N a(n) = 1 + Sum_{k=0..n-1} binomial(n,k)^2 * a(k).
%H Seiichi Manyama, <a href="/A335946/b335946.txt">Table of n, a(n) for n = 0..248</a>
%F Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (2 - BesselI(0,2*sqrt(x))).
%F a(n) = 2 * A102221(n) for n > 0.
%t a[n_] := a[n] = 1 + Sum[Binomial[n, k]^2 a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
%t nmax = 16; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(2 - BesselI[0, 2 Sqrt[x]]), {x, 0, nmax}], x] Range[0, nmax]!^2
%Y Row sums of A102220.
%Y Cf. A000629, A102221.
%K nonn
%O 0,2
%A _Ilya Gutkovskiy_, Jul 01 2020