login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{m>=1} 1/(1/4 + z(m)^2)^2 where z(m) is the imaginary part of the m-th nontrivial zero of the Riemann zeta function.
0

%I #12 Jul 30 2020 06:55:28

%S 0,0,0,0,3,7,1,0,0,6,3,6,4,3,7,4,6,4,8,7,1,5,1,2,5,0,5,4,3,3,9,1,3,2,

%T 7,9,7,1,3,5,9,6,2,9,1,9,7,9,9,5,6,5,2,8,7,0,1,9,3,5,6,9,0,9,1,7,9,0,

%U 0,0,3,6,7,0,3,7,8,2,2,0,4,4,7,1,4,6,4,8,7,5,7,0,0,6,2,8,5,8,5,8,4,5,5,0,0,5,8,4,8

%N Decimal expansion of Sum_{m>=1} 1/(1/4 + z(m)^2)^2 where z(m) is the imaginary part of the m-th nontrivial zero of the Riemann zeta function.

%C Sum_{m>=1} 1/z(m) is a divergent series; see A332614.

%C Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.

%C Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.

%C Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; see A335815.

%C Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.

%C Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.

%C Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.

%C Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.

%H André Voros, <a href="https://arxiv.org/abs/math/0104051">Zeta functions for the Riemann zeros</a>, arXiv:math/0104051 [math.CV], 2002-2003, p.22 Table 1.

%F Equals: 3 + gamma + gamma^2 - Pi^2/8 - log(4*Pi) + 2*gamma(1), where gamma is the Euler-Mascheroni gamma constant (see A001620) and gamma(1) is 1st Stieltjes constant (see A082633).

%e 0.0000371006364374648715125054339132797135962919799565287...

%t Join[{0, 0, 0, 0},RealDigits[N[3 + EulerGamma + EulerGamma^2 - Pi^2/8 - Log[4 Pi] + 2 StieltjesGamma[1], 105]][[1]]]

%Y Cf. A013629, A074760, A104539, A104540, A104541, A104542, A245275, A245276, A306339, A306340, A306341, A332645, A333360, A335814, A335815.

%K nonn,cons

%O 0,5

%A _Artur Jasinski_, Jun 29 2020