Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 08 2020 13:05:57
%S 1,2,2,2,4,2,4,2,4,4,4,4,4,4,4,4,4,4,4,4,8,4,8,4,4,4,4,4,8,4,8,4,4,4,
%T 4,4,8,4,8,4,8,8,8,8,8,8,8,8,4,8,4,8,4,8,4,8,8,8,8,8,8,8,8,8,4,8,4,8,
%U 4,8,4,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
%N a(n) = 2*a(floor((n-1)/a(n-1))) with a(1) = 1.
%C Least k such that a(k) = 2^n are 1, 2, 5, 21, 169, 2705, ... (Conjecture: This sequence is A117261).
%H Robert Israel, <a href="/A335901/b335901.txt">Table of n, a(n) for n = 1..10000</a>
%p f:= proc(n) option remember;
%p 2*procname(floor((n-1)/procname(n-1))) end proc:
%p f(1):= 1:
%p map(f, [$1..105]); # _Robert Israel_, Jul 08 2020
%t a[1] = 1; a[n_] := a[n] = 2 * a[Floor[(n-1)/a[n-1]]]; Array[a, 100] (* _Amiram Eldar_, Jun 29 2020 *)
%o (PARI) a=vector(10^3); a[1]=1; for(n=2, #a, a[n]=2*a[(n-1)\a[n-1]]); a
%Y Cf. A130147, A132424, A130535, A283207, A288914, A335898.
%K nonn,easy
%O 1,2
%A _Altug Alkan_, following a suggestion from _Andrew R. Booker_, Jun 29 2020