login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} binomial(n,k) * binomial(n+(n-1)*k,k-1) for n > 0.
5

%I #29 Aug 03 2020 10:28:16

%S 1,1,3,20,234,4159,101538,3182454,122285201,5575750271,294529785168,

%T 17697480642005,1192398100081202,89053864927236146,

%U 7302988011333915878,652439391227186881683,63077327237347821501754,6561701255914880362990927,730833849063629052249986940

%N a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} binomial(n,k) * binomial(n+(n-1)*k,k-1) for n > 0.

%H Seiichi Manyama, <a href="/A335871/b335871.txt">Table of n, a(n) for n = 0..339</a>

%t a[0] = 1; a[n_] := Sum[Binomial[n, k] * Binomial[n + (n - 1)*k, k - 1], {k, 1, n}] / n; Array[a, 19, 0] (* _Amiram Eldar_, Aug 01 2020 *)

%o (PARI) {a(n) = if(n==0, 1, sum(k=1, n, binomial(n, k)*binomial(n+(n-1)*k, k-1))/n)}

%Y Main diagonal of A336706.

%Y Cf. A336578, A336712, A336713, A336714.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Aug 01 2020