OFFSET
0,3
LINKS
J. Lovejoy, Asymmetric generalizations of Schur's theorem, in: Andrews G., Garvan F. (eds) Analytic Number Theory, Modular Forms and q-Hypergeometric Series. ALLADI60 2016. Springer Proceedings in Mathematics & Statistics, vol 221. Springer, Cham.
FORMULA
G.f.: Product_{n>=1} (1+q^(3*n-1))*(1+q^(3*n-2))/(1-q^(3*n-1)).
a(n) ~ Pi^(2/3) * exp(2*Pi*sqrt(n)/3) / (3*sqrt(2)*Gamma(1/3)*n^(5/6)). - Vaclav Kotesovec, Jan 14 2021
EXAMPLE
The 6 overpartitions counted by a(6) are: [5,1'], [5',1'], [4',2], [4',2'], [2,2,2], [2',2,2].
MATHEMATICA
nmax = 60; CoefficientList[Series[Product[(1 + x^(3*k-1)) * (1 + x^(3*k-2)) / (1 - x^(3*k-1)), {k, 1, nmax/3}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeremy Lovejoy, Jun 20 2020
STATUS
approved