login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*a(n-1) + 3*a(n-2) + 5*a(n-3), a(0) = 0, a(1) = 1, a(2) = 1.
3

%I #6 Jun 22 2020 19:30:03

%S 0,1,1,5,18,56,191,640,2133,7141,23881,79850,267048,893051,2986496,

%T 9987385,33399513,111693661,373522786,1249124120,4177284903,

%U 13969556096,46716587501,156228267805,522454078593,1747175898106,5842855371016,19539508829315,65343463262208

%N a(n) = 2*a(n-1) + 3*a(n-2) + 5*a(n-3), a(0) = 0, a(1) = 1, a(2) = 1.

%C In Soykan (2020), this sequences is referred to as E_n, "modified Grahaml sequence" (sic), see p. 45.

%H Michael De Vlieger, <a href="/A335720/b335720.txt">Table of n, a(n) for n = 0..1908</a>

%H Yüksel Soykan, <a href="https://doi.org/10.9734/JAMCS/2020/v35i230248">On Generalized Grahaml Numbers</a>, Journal of Advances in Mathematics and Computer Science (2020) Vol. 35, No. 2: 42-57, Article no. JAMCS.55255.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,5).

%F G.f.: (x - x^2)/(1 - 2*x - 3*x^2 - 5*x^3).

%t LinearRecurrence[{2, 3, 5}, {0, 1, 1}, 29] (* or *)

%t CoefficientList[Series[(x - x^2)/(1 - 2 x - 3 x^2 - 5 x^3), {x, 0, 28}], x]

%Y Cf. A000032, A000045, A000073, A335718, A335719.

%K nonn,easy

%O 0,4

%A _Michael De Vlieger_, Jun 18 2020