%I #8 Jun 22 2020 19:30:22
%S 0,1,2,7,25,81,272,912,3045,10186,34067,113917,380965,1274016,4260512,
%T 14247897,47647410,159341071,532863857,1781987977,5959272880,
%U 19928828976,66645416477,222873684282,745327762875,2492503660981,8335359031997,27874867861312,93218331123520
%N a(n) = 2*a(n-1) + 3*a(n-2) + 5*a(n-3), a(0) = 0, a(1) = 1, a(2) = 2.
%C In Soykan (2020), this sequences is referred to as G_n, "Grahaml sequence" (sic), see p. 45.
%H Michael De Vlieger, <a href="/A335718/b335718.txt">Table of n, a(n) for n = 0..1908</a>
%H YĆ¼ksel Soykan, <a href="https://doi.org/10.9734/JAMCS/2020/v35i230248">On Generalized Grahaml Numbers</a>, Journal of Advances in Mathematics and Computer Science (2020) Vol. 35, No. 2: 42-57, Article no. JAMCS.55255.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,3,5).
%F G.f.: x/(1 - 2*x - 3*x^2 - 5*x^3).
%t LinearRecurrence[{2, 3, 5}, {0, 1, 2}, 29] (* or *)
%t CoefficientList[Series[x/(1 - 2 x - 3 x^2 - 5 x^3), {x, 0, 28}], x]
%Y Cf. A000032, A000045, A000073, A335719, A335720.
%K nonn,easy
%O 0,3
%A _Michael De Vlieger_, Jun 18 2020