OFFSET
1,1
COMMENTS
Since the average of any two prime side lengths of an isosceles triangle is itself a prime, p, the perimeters 3p are in the sequence for all primes p.
LINKS
Wikipedia, Integer Triangle
MATHEMATICA
Table[If[Sum[Sum[(1 - Ceiling[(i + k)/2] + Floor[(i + k)/2]) (1 - Ceiling[(n - i)/2] + Floor[(n - i)/2]) (1 - Ceiling[(n - k)/2] + Floor[(n - k)/2]) (PrimePi[(i + k)/2] - PrimePi[(i + k)/2 - 1])*(PrimePi[(n - i)/2] - PrimePi[(n - i)/2 - 1])*(PrimePi[(n - k)/2] - PrimePi[(n - k)/2 - 1]) * Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}] > 0, n, {}], {n, 150}] // Flatten
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Oct 02 2020
STATUS
approved