login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a K(5,n) (with n at least 2) complete bipartite graph missing one edge.
0

%I #34 Jun 27 2023 11:10:34

%S 80,6800,316928,11784608,397551920,12828154160,405380093408,

%T 12683426301248,394943123789840,12269641330477520,380755304897252288,

%U 11809363300986469088,366179512530595589360,11352903763691009133680,351960100658771425777568,10911064386177197162304128

%N Number of sets (in the Hausdorff metric geometry) at each location between two sets defined by a K(5,n) (with n at least 2) complete bipartite graph missing one edge.

%C Number of {0,1} 5 X n matrices (with n at least 2) with one fixed zero entry and no zero rows or columns.

%C Number of edge covers of a K(5,n) complete bipartite graph (with n at least 2) missing one edge.

%H Steven Schlicker, Roman Vasquez, and Rachel Wofford, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Wofford/wofford4.html">Integer Sequences from Configurations in the Hausdorff Metric Geometry via Edge Covers of Bipartite Graphs</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.6.6.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (57,-1002,6562,-15381,9765).

%F a(n) = 15*31^(n-1) - 43*15^(n-1) + 46*7^(n-1) - 22*3^(n-1) + 4.

%F From _Stefano Spezia_, Jul 04 2020: (Start)

%F G.f.: 16*x^2*(5 + 140*x + 593*x^2 + 522*x^3)/(1 - 57*x + 1002*x^2 - 6562*x^3 + 15381*x^4 - 9765*x^5).

%F a(n) = 57*a(n-1) - 1002*a(n-2) + 6562*a(n-3) - 15381*a(n-4) + 9765*a(n-5) for n > 6. (End)

%e For n = 2, a(2) = 80.

%t Array[15*31^(# - 1) - 43*15^(# - 1) + 46*7^(# - 1) - 22*3^(# - 1) + 4 &, 16, 2] (* _Michael De Vlieger_, Jun 22 2020 *)

%Y Sequences of segments from removing edges from bipartite graphs A335608-A335613, A337416-A337418, A340173-A340175, A340199-A340201, A340897-A340899, A342580, A342796, A342850, A340403-A340405, A340433-A340438, A341551-A341553, A342327-A342328, A343372-A343374, A343800. Polygonal chain sequences A152927, A152928, A152929, A152930, A152931, A152932, A152933, A152934, A152939. Number of {0,1} n X n matrices with no zero rows or columns A048291.

%K easy,nonn

%O 2,1

%A _Steven Schlicker_, Jun 15 2020