Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Aug 27 2020 08:18:41
%S 0,25,289,2025,13225,100489,198025,319225,466489,4862025,19758025,
%T 42471289,1975358025,3199599225,60415182025,134885049289,151192657225,
%U 197531358025,207612366025,248956092025,447136954489,588186226489,19753091358025,31996727599225,311995522926025,1975308691358025
%N Squares that remain squares when the repunit with the same number of digits is added.
%H Robert Israel, <a href="/A335598/b335598.txt">Table of n, a(n) for n = 1..10000</a>
%e 0 is a term because 0 + 1 = 1. The result is another square.
%e 25 is a term because 25 + 11 = 36. The result is another square.
%e 289 is a term because 289 + 111 = 400. The result is another square.
%p f:= proc(d,q,m) local x,y;
%p if d < q/d then return NULL fi;
%p x:= ((d-q/d)/2)^2;
%p if x >= 10^m and x < 10^(m+1) then x else NULL fi;
%p end proc:
%p R:= 0:
%p for m from 1 to 20 do
%p q:= (10^m-1)/9;
%p V:= sort(convert(map(f, numtheory:-divisors(q),q,m-1),list));
%p R:= R, op(V);
%p od:
%p R; # _Robert Israel_, Aug 21 2020
%o (PARI) lista(limit)={for(k=0, sqrtint(limit), my(t=k^2); if(issquare(t + (10^if(t, 1+logint(t,10), 1)-1)/9), print1(t, ", ")))}
%o { lista(10^12) } \\ _Andrew Howroyd_, Aug 11 2020
%Y Cf. A002275, A048612, A273229.
%K nonn,base,easy
%O 1,2
%A _José de Jesús Camacho Medina_, Jun 14 2020
%E Name corrected by _Robert Israel_, Aug 26 2020