login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the real part of the complex root of cos(x + i*y) = x - i*y with least x > 0 and y > 0.
3

%I #10 Jun 14 2020 22:46:53

%S 9,6,2,2,6,6,0,0,6,3,3,3,0,6,0,6,8,9,4,8,5,0,8,0,9,2,5,9,3,1,0,2,5,3,

%T 7,8,2,7,5,4,7,1,4,1,9,2,8,6,6,6,4,7,4,1,2,5,5,2,0,9,5,1,6,3,4,8,1,4,

%U 2,7,7,0,0,3,8,2,6,8,9,7,7,0,6,4,4,3,8

%N Decimal expansion of the real part of the complex root of cos(x + i*y) = x - i*y with least x > 0 and y > 0.

%H T. H. Miller, <a href="http://dx.doi.org/10.1017/S0013091500030868">On the numerical values of the roots of the equation cos x = x</a>, Proc. Edinburgh Math. Soc., Vol. 9 (1890), pp. 80-83.

%H T. Hugh Miller, <a href="https://doi.org/10.1017/S001309150003460X">On the imaginary roots of cos x = x</a>, Proc. Edinburgh Math. Soc., Vol. 21 (1902), pp. 160-162 (the last 3 pages of the pdf file).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DottieNumber.html">Dottie Number</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dottie_number">Dottie number</a>.

%e 0.96226600633306068948508092593102537827547141928666...

%t z = {x, y} /. FindRoot[{x == Cos[x]*Cosh[y], y == Sin[x]*Sinh[y]}, {{x, 1}, {y, 1}}, WorkingPrecision -> 100]; RealDigits[z[[1]], 10, 90][[1]]

%Y Cf. A003957, A335564 (the imaginary part), A335565, A335566.

%K nonn,cons

%O 0,1

%A _Amiram Eldar_, Jun 14 2020