login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335496
a(n) is the least odd number k such that Omega(k) = n, Omega(k+2) = n+1, and Omega(k+4) = n+2, where Omega(k) is the number of prime factors of k (A001222).
1
23, 871, 5423, 229955, 13771373, 558588875, 21549990623, 1325878234371, 17040894859373, 429205867309373
OFFSET
1,1
COMMENTS
a(n) mod 81 for n = 1..8: {23, 61, 77, 77, 77, 77, 77, 0}.
FORMULA
a(n) >= A335498(n). - Daniel Suteu, Jul 08 2023
EXAMPLE
23 is a term: 23 is a prime, 25=5*5 is a semiprime, 27=3*3*3 is a triprime.
871 is a term: 871 = 13*67 (semiprime), 873 = 3*3*97 (triprime), 875 = 5*5*5*7 (quadprime).
PROG
(PARI)
generate(A, B, n, k) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p, ceil(A/m)), B\m, my(t=m*q); if(bigomega(t-4) == k && bigomega(t-2) == k+1, listput(list, t-4))), forprime(q=p, sqrtnint(B\m, n), list=concat(list, f(m*q, q, n-1)))); list); vecsort(Vec(f(1, 3, n)));
a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n+2, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Jul 08 2023
CROSSREFS
Cf. A335498.
Sequence in context: A158505 A217116 A081731 * A183523 A233339 A008961
KEYWORD
nonn,more
AUTHOR
Zak Seidov and Giovanni Resta, Jun 11 2020
EXTENSIONS
a(9)-a(10) from Daniel Suteu, Jul 08 2023
STATUS
approved