Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 26 2024 10:21:17
%S 1,1,1,2,1,1,2,1,1,3,2,1,1,3,2,2,1,4,1,1,3,1,4,2,1,1,5,2,1,3,1,5,3,2,
%T 1,1,4,6,1,2,1,2,1,3,6,1,4,1,1,2,1,7,1,1,5,4,3,2,2,7,1,1,1,2,1,5,8,3,
%U 1,4,1,1,1,3,8,2,1,1,6,1,3,2,1,1,2,9,5,1,1,2,1,3
%N Number of partitions of k_n into two distinct parts (s,t) such that k_n | s*t, where k_n = A335437(n).
%C a(n) >= 1.
%H Robert Israel, <a href="/A335438/b335438.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F a(n) = floor((A000188(A335437(n))-1)/2). - _Robert Israel_, Dec 23 2024
%e a(2) = 1; A335437(2) = 16 has exactly one partition into two distinct parts (12,4), such that 16 | 12*4 = 48. Therefore, a(2) = 1.
%p f:= proc(n) local F,beta,t;
%p F:= ifactors(n)[2];
%p beta:= mul(t[1]^floor(t[2]/2),t=F);
%p if beta <= 2 then NULL else floor((beta-1)/2) fi
%p end proc:
%p map(f, [$1..500]); # _Robert Israel_, Dec 23 2024
%t Table[If[Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[(n - 1)/2]}] > 0, Sum[(1 - Ceiling[(i*(n - i))/n] + Floor[(i*(n - i))/n]), {i, Floor[(n - 1)/2]}], {}], {n, 400}] // Flatten
%Y Cf. A000188, A013929, A335234, A335437.
%K nonn
%O 1,4
%A _Wesley Ivan Hurt_, Jun 10 2020