%I #16 Dec 10 2023 17:37:14
%S 0,1,1,2,1,1,1,2,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,4,1,1,
%T 1,1,1,1,1,2,1,1,1,2,2,1,1,4,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,2,1,1,1,2,
%U 1,1,1,1,1,1,2,2,1,1,1,4,4,1,1,2,1,1,1,2,1,2,1,2,1,1,1,4,1,2,2,1,1,1,1,2,1
%N Prime exponent of the first Fermi-Dirac factor (number of form p^(2^k), A050376) reached, when starting from n and iterating with A334870, with a(1) = 0.
%H Antti Karttunen, <a href="/A335428/b335428.txt">Table of n, a(n) for n = 1..65537</a>
%e For n=27, when iterating with A334870, we obtain the path 27 -> 18 -> 9, with that 9 being the first prime power encountered that has an exponent of the form 2^k, as 9 = 3^2, thus a(27) = 2. See the binary tree A334860 or A334866 for how such paths go.
%e For n=900, when iterating with A334870 we obtain the path 900 -> 30 -> 15 -> 10 -> 5, and 5^1 is finally a prime power with an exponent that is two's power, thus a(900) = 1. Note that 900 is the first such position of 1 in this sequence that is not listed in A333634.
%o (PARI)
%o A209229(n) = (n && !bitand(n,n-1));
%o A302777(n) = A209229(isprimepower(n));
%o A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));
%o A335428(n) = { while(n>1 && !A302777(n), n = A334870(n)); isprimepower(n); };
%o (PARI)
%o \\ Faster, A209229 and A302777 like in above:
%o A335428(n) = if(1==n,0, while(!A302777(n), if(issquarefree(n), return(1)); if(issquare(n), n = sqrtint(n), n /= core(n))); isprimepower(n));
%Y Cf. A050376, A209229, A302777, A334860, A334866, A334870, A334872.
%K nonn
%O 1,4
%A _Antti Karttunen_, Jun 26 2020