Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 19 2022 08:07:00
%S 1,0,9,0,1,7,0,2,9,9,5,0,8,0,4,8,1,1,3,0,2,2,6,6,8,9,7,0,2,7,9,2,4,4,
%T 2,9,3,6,1,6,8,5,8,3,1,7,4,4,0,7,2,3,6,4,9,7,5,7,9,3,2,1,9,9,7,0,2,1,
%U 5,2,0,9,0,3,6,0,3,5,7,8,9,7,4,8,9,2,2,9,3,0,8,0,9,7,9,0,3,9,7,7,1,0,4,7,2
%N Decimal expansion of Sum_{k>=0} 1/cosh(Pi*k).
%F Equals 1/2 + Gamma(1/4)^2 / (4*Pi^(3/2)).
%F Equals 1/2 + sqrt(Pi) / (2*Gamma(3/4)^2).
%e 1.090170299508048113022668970279244293616858317440723649757932199702152...
%p evalf(Sum(1/cosh(Pi*k), k=0..infinity), 120);
%p evalf(1/2 + sqrt(Pi) / (2*GAMMA(3/4)^2), 120);
%t RealDigits[1/2 + Gamma[1/4]^2/(4*Pi^(3/2)), 10, 120][[1]]
%o (PARI) suminf(k=0, 1/cosh(Pi*k))
%Y Cf. A240964, A254445, A335414. Essentially the same as A249205.
%K nonn,cons
%O 1,3
%A _Vaclav Kotesovec_, Jun 08 2020