login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to linearly order the components of a simple labeled graph on n nodes so that the label 1 is in the first component.
1

%I #28 Jun 07 2020 18:50:47

%S 0,1,2,9,75,1152,34682,2138198,269883034,68817253672,35198146897560,

%T 36032836311773232,73789380474381388000,302234317635238719436144,

%U 2475886860241348605928934912,40564851111492400113490251715664,1329228293742222434273523342085983312,87112291457022644126987794521680595912960

%N Number of ways to linearly order the components of a simple labeled graph on n nodes so that the label 1 is in the first component.

%F E.g.f.: Integral [d/dx log(g(x))]/(1 - log(g(x))) dx, where g(x) is the e.g.f. for A006125.

%t nn = 16; g[x_] := Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn+1}]; Table[n!, {n, 0, nn + 1}] CoefficientList[Integrate[Series[D[Log[g[x]], x]/(1 - Log[g[x]]), {x, 0, nn}], x], x]

%Y Cf. A006125, A335356.

%K nonn

%O 0,3

%A _Geoffrey Critzer_, Jun 04 2020