login
A335357
Number of compositions of n such that every subsequence has a different sum.
2
1, 1, 1, 3, 3, 5, 5, 13, 13, 27, 21, 41, 41, 61, 55, 111, 105, 185, 155, 313, 259, 495, 387, 701, 623, 961, 805, 1419, 1191, 1781, 1481, 2437, 2161, 3387, 2745, 4457, 3965, 5821, 4867, 8223, 6909, 10625, 8591, 14617, 11887, 18735, 14991, 24821, 20291, 32113
OFFSET
0,4
COMMENTS
All terms are odd.
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..700 (terms 0..100 from Alois P. Heinz)
EXAMPLE
a(7) = 13: 7, 16, 25, 34, 43, 52, 61, 124, 142, 214, 241, 412, 421.
a(8) = 13: 8, 17, 26, 35, 53, 62, 71, 125, 152, 215, 251, 512, 521.
a(9) = 27: 9, 18, 27, 36, 45, 54, 63, 72, 81, 126, 135, 153, 162, 216, 234, 243, 261, 315, 324, 342, 351, 423, 432, 513, 531, 612, 621.
a(10) = 21: 10, 19, 28, 37, 46, 64, 73, 82, 91, 127, 136, 163, 172, 217, 271, 316, 361, 613, 631, 712, 721.
MAPLE
b:= proc(n, s) option remember; `if`(n=0, 1, add((h-> `if`(nops(s)*
2=nops(h), b(n-j, h), 0))({s[], map(x-> x+j, s)[]}), j=1..n))
end:
a:= n-> b(n, {0}):
seq(a(n), n=0..40);
MATHEMATICA
b[n_, s_] := b[n, s] = If[n == 0, 1, Sum[Function[h, If[Length[s]*
2 == Length[h], b[n - j, h], 0]][Union@Join[s, s + j]], {j, 1, n}]];
a[n_] := b[n, {0}];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 13 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A032020, A275972 (the same for partitions).
Sequence in context: A289768 A161220 A032022 * A325679 A147198 A147048
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 03 2020
STATUS
approved