login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335345
Expansion of e.g.f. exp(x^2/(2*(1 - x)^3)).
3
1, 0, 1, 9, 75, 690, 7305, 89145, 1237425, 19221300, 329371245, 6157738125, 124551652995, 2707913238030, 62945320162725, 1557291398788125, 40844991621859425, 1131753403094113800, 33025920511859300025, 1012128709342410284625, 32494107983067177522075
OFFSET
0,4
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A001809(k) * a(n-k).
D-finite with recurrence 2*a(n) +8*(-n+1)*a(n-1) +2*(n-1)*(6*n-13)*a(n-2) -(n-1)*(n-2)*(8*n-23)*a(n-3) +2*(n-1)*(n-2)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jun 05 2020
a(n) ~ 2^(-9/8) * 3^(1/8) * n^(n - 1/8) * exp(1/54 - n^(1/4)/(2^(15/4)*3^(5/4)) - sqrt(6*n)/12 + 2^(7/4)*3^(-3/4)*n^(3/4) - n). - Vaclav Kotesovec, Jun 11 2020
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n+k-1,n-2*k)/(2^k * k!). - Seiichi Manyama, Jun 17 2024
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[x^2/(2 (1 - x)^3)], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = (1/4) Sum[Binomial[n - 1, k - 1] k (k - 1) k! a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
PROG
(PARI) seq(n)=Vec(serlaplace(exp(x^2/(2*(1 - x)^3) + O(x*x^n)))) \\ Andrew Howroyd, Jun 02 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 02 2020
STATUS
approved