Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Aug 07 2024 15:11:58
%S 1,1,1,4,1,1,1,4,9,1,1,4,1,1,1,1,1,9,1,4,1,1,1,4,25,1,9,4,1,1,1,1,1,1,
%T 1,36,1,1,1,4,1,1,1,4,9,1,1,1,49,25,1,4,1,9,1,4,1,1,1,4,1,1,9,4,1,1,1,
%U 4,1,1,1,36,1,1,25,4,1,1,1,1,1,1,1,4,1
%N Square part of 4th-power-free part of n.
%C Equivalently, biquadratefree (4th-power-free) part of square part of n.
%C Multiplicative. The terms are squares of squarefree numbers (A062503).
%C Every positive integer n is the product of a unique subset S_n of the terms of A050376 (sometimes called Fermi-Dirac primes). a(n) is the product of the members of S_n that are squares of prime numbers (A001248).
%H Michel Marcus, <a href="/A335324/b335324.txt">Table of n, a(n) for n = 1..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Biquadratefree.html">Biquadratefree</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SquarePart.html">Square part</a>.
%F a(n) = A053165(A008833(n)) = A008833(A053165(n)).
%F a(n) = A053165(n) / A007913(n).
%F a(n) = A008833(n) / A008835(n).
%F n = A007913(n) * a(n) * A008835(n).
%F a(n) = A225546(A038500(A225546(n))).
%F a(n^2) = A007913(n)^2.
%F a(A003961(n)) = A003961(a(n)).
%F a(A331590(n, k)) = A331590(a(n), a(k)).
%F a(p^e) = p^(2*floor(e/2) - 4*floor(e/4)). - _Amiram Eldar_, Jun 01 2020
%F From _Amiram Eldar_, Sep 21 2023: (Start)
%F Dirichlet g.f.: zeta(s) * zeta(2*s-2) * zeta(4*s)/(zeta(2*s) * zeta(4*s-4)).
%F Sum_{k=1..n} a(k) ~ (4*zeta(3/2)*zeta(4))/(21*zeta(3)) * n^(3/2). (End)
%e Removing the 4th powers from 192 = 2^6 * 3^1 gives 2^(6 - 4) * 3^1 = 2^2 * 3 = 12. So the 4th-power-free part of 192 is 12. The square part of 12 (largest square dividing 12) is 4. So a(192) = 4.
%t f[p_, e_] := p^(2*Floor[e/2] - 4*Floor[e/4]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Jun 01 2020 *)
%o (PARI) A053165(n)=my(f=factor(n)); f[, 2]=f[, 2]%4; factorback(f);
%o a(n) = my(m=A053165(n)); m/core(m); \\ _Michel Marcus_, Jun 01 2020
%o (Python)
%o from math import prod
%o from sympy import factorint
%o def A335324(n): return prod(p**(e&2) for p, e in factorint(n).items()) # _Chai Wah Wu_, Aug 07 2024
%Y A007913, A008833, A008835, A053165 are used in formulas defining the sequence.
%Y Column 1 of A352780.
%Y Range of values is A062503.
%Y Positions of 1's: A252895.
%Y Related to A038500 by A225546.
%Y The formula section details how the sequence maps the terms of A003961, A331590.
%Y Cf. A001248, A050376, A083730.
%Y Cf. A002117, A013662, A078434.
%K nonn,easy,mult
%O 1,4
%A _Peter Munn_, May 31 2020