login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the squared distance between the points P(n) and P(0) on a plane, n >= 0, such that the distance between P(n) and P(n+1) is n+1 and, going from P(n) to P(n+2), a 90-degree left turn is taken in P(n+1).
1

%I #82 Oct 10 2022 10:20:35

%S 0,1,5,8,8,13,25,32,32,41,61,72,72,85,113,128,128,145,181,200,200,221,

%T 265,288,288,313,365,392,392,421,481,512,512,545,613,648,648,685,761,

%U 800,800,841,925,968,968,1013,1105,1152,1152,1201,1301,1352,1352,1405,1513

%N a(n) is the squared distance between the points P(n) and P(0) on a plane, n >= 0, such that the distance between P(n) and P(n+1) is n+1 and, going from P(n) to P(n+2), a 90-degree left turn is taken in P(n+1).

%C P(n) is a corner on a spiral like this:

%C * * * * * * * * * * * *

%C *

%C * * * * * * * * *

%C * * *

%C * * * * * * *

%C * * * * *

%C * * * * * *

%C * * * *

%C * * * * * * * *

%C * *

%C * * * * * * * * * *

%C If we interpret the pointer from P(0) to P(n) as a complex number z(n), the description of the spiral is short because a 90-degree left turn is a multiplication by i (imaginary unit) and the distance of P(n) from P(0) is abs(z(n))^2, see formula 1.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (3,-5,7,-7,5,-3,1).

%F a(n) = abs(z(n))^2 with

%F 1) z(n) = z(n-1)+n*i^(n-1), z(0)=0. (recursive)

%F 2) z(n) = i/2*(n*i^(n+1)-(n+1)*i^n+1). (explicit)

%F Without complex numbers for k >= 0:

%F a(4*k) = 8*k^2,

%F a(4*k+1) = 8*k^2+4*k+1,

%F a(4*k+2) = 8*k^2+12*k+5,

%F a(4*k+3) = 8*(k+1)^2.

%F From _Stefano Spezia_, Jun 28 2020: (Start)

%F G.f.: x*(1 + 2*x - 2*x^2 + 2*x^3 + x^4)/((1 - x)^3*(1 + x^2)^2).

%F a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7) for n > 6. (End)

%e n n*i^(n-1) z(n) a(n)

%e ------------------------------------

%e 0 0 0 0

%e 1 1 1 1

%e 2 2i 1+2i 5 = 1^2 + 2^2

%e 3 -3 -2+2i 8 = 2^2 + 2^2

%e 4 -4i -2-2i 8

%e 5 5 3-2i 13 = 3^2 + 2^2

%e 6 6i 3+4i 25 = 3^2 + 4^2

%t z[0]=0; z[n_]:=z[n-1]+n*I^(n-1); a[n_]:=z[n]*Conjugate[z[n]]; Array[a,55,0] (* _Stefano Spezia_, Jun 28 2020 *)

%Y Cf. A000982, A174344, A268038, A274923, A336336.

%K nonn

%O 0,3

%A _Gerhard Kirchner_, Jun 28 2020