Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jan 10 2022 15:06:32
%S 1,1,2,1,3,1,4,1,2,2,5,1,6,3,4,1,7,1,8,2,5,6,9,1,3,7,2,3,10,1,11,1,8,
%T 9,10,1,12,11,12,2,13,2,14,4,5,13,15,1,4,2,14,6,16,1,15,3,16,17,17,1,
%U 18,18,7,1,19,3,19,8,20,4,20,1,21,21,3,9,22,5,22,2
%N n is the a(n)-th positive integer having its sequence of exponents in canonical prime factorization.
%H David A. Corneth, <a href="/A335286/b335286.txt">Table of n, a(n) for n = 1..10000</a>
%F Ordinal transform of A071364. - _Alois P. Heinz_, Jun 01 2020
%e a(14) = 3 as 14 has prime signature [1, 1] and it's the third positive integer having that prime signature, after 6 and 10.
%p p:= proc() 0 end:
%p a:= proc(n) option remember; local t; a(n-1); t:=
%p (l-> mul(ithprime(i)^l[i][2], i=1..nops(l)
%p ))(sort(ifactors(n)[2])); p(t):= p(t)+1
%p end: a(0):=0:
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Jun 01 2020
%t A071364[n_] := If[n == 1, 1, With[{f = FactorInteger[n]}, Times @@ (Prime[Range[Length[f]]]^f[[All, 2]])]];
%t Module[{b}, b[_] = 0;
%t a[n_] := With[{t = A071364[n]}, b[t] = b[t] + 1]];
%t Array[a, 105] (* _Jean-François Alcover_, Jan 10 2022 *)
%o (PARI) first(n) = { my(m = Map(), res = vector(n)); for(i = 1, n, c = factor(i)[,2]; if(mapisdefined(m, c), res[i] = mapget(m, c) + 1; mapput(m, c, res[i]) , res[i] = 1; mapput(m, c, 1) ) ); res }
%Y Cf. A046523, A064839, A071364, A120426, A254524.
%K nonn,easy
%O 1,3
%A _David A. Corneth_, May 30 2020