login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Denominator(-4*n^2*Zeta(1 - n)^2*(1 - 2^n)) for n >= 1, a(0) = 1.
3

%I #8 Jun 25 2020 02:57:11

%S 1,1,3,1,15,1,7,1,15,1,33,1,455,1,3,1,255,1,133,1,33,1,69,1,455,1,3,1,

%T 435,1,2387,1,255,1,3,1,319865,1,3,1,1353,1,43,1,345,1,141,1,7735

%N a(n) = Denominator(-4*n^2*Zeta(1 - n)^2*(1 - 2^n)) for n >= 1, a(0) = 1.

%F a(n) = denominator(Bernoulli(n)^2*(2^(n+2) - 4)).

%e Rational sequence starts: 0, 1, 1/3, 0, 1/15, 0, 1/7, 0, 17/15, 0, 775/33, 0, 477481/455, ...

%p a := s -> `if`(s = 0, 0, -4*s^2*Zeta(1 - s)^2*(1 - 2^s)):

%p seq(denom(a(s)), s = 0..24);

%Y Cf. A335264 (numerators), A164555/A027642 (Bernoulli numbers).

%Y Cf. A335538, A335539, A327497.

%K nonn,frac

%O 0,3

%A _Peter Luschny_, Jun 13 2020