login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of -(Pi/8 + EulerGamma/4 + log(8*Pi)/4 - 2).
0

%I #15 Sep 28 2021 17:25:49

%S 6,5,6,9,5,4,1,4,5,1,9,3,5,8,3,6,0,4,4,4,1,7,6,0,6,2,5,6,3,7,5,6,4,4,

%T 2,7,7,4,6,3,6,5,1,8,7,0,9,4,1,1,1,5,3,9,2,0,7,7,7,4,3,4,2,2,5,2,2,2,

%U 6,3,5,8,5,7,1,3,3,0,1,5,0,7,8,6,9,5,5,5

%N Decimal expansion of -(Pi/8 + EulerGamma/4 + log(8*Pi)/4 - 2).

%C Conjecture: Equals -(1/Pi)*Integral_{t=0..Infinity} log(|Zeta(1/2 + i*t)/Zeta(1/2)|) *(1/t^2) dt. The Riemann hypothesis is equivalent to this conjecture.

%H Milin, <a href="https://mathoverflow.net/q/279936">Answer to: Collection of equivalent forms of Riemann Hypothesis</a>, version: 2019-07-18, MathOverflow.

%e Equals 0.656954145193583604441760625637564427746365187094111539207774...

%p Digits := 120: -(Pi/8 + gamma/4 + log(8*Pi)/4 - 2)*10^88:

%p ListTools:-Reverse(convert(floor(%), base, 10));

%t RealDigits[-(Pi/8+EulerGamma/4+Log[8*Pi]/4-2),10,120][[1]] (* _Harvey P. Dale_, Sep 28 2021 *)

%o (PARI) -(Pi/8 + Euler/4 + log(8*Pi)/4 - 2) \\ _Michel Marcus_, Jun 12 2020

%K nonn,cons

%O 0,1

%A _Peter Luschny_, Jun 11 2020