%I #7 May 30 2020 09:18:55
%S 0,10,11,14,15,26,27,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,47,
%T 50,51,52,53,54,55,56,57,58,59,60,61,62,63,74,75,78,79,90,91,94,95,98,
%U 99,100,101,102,103,104,105,106,107,108,109,110,111,114,115,116
%N Numbers whose binary indices are not a singleton nor pairwise coprime.
%C A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
%F Complement in A001477 of A326675 and A000079.
%e The sequence of terms together with their binary expansions and binary indices begins:
%e 0: 0 ~ {}
%e 10: 1010 ~ {2,4}
%e 11: 1011 ~ {1,2,4}
%e 14: 1110 ~ {2,3,4}
%e 15: 1111 ~ {1,2,3,4}
%e 26: 11010 ~ {2,4,5}
%e 27: 11011 ~ {1,2,4,5}
%e 30: 11110 ~ {2,3,4,5}
%e 31: 11111 ~ {1,2,3,4,5}
%e 34: 100010 ~ {2,6}
%e 35: 100011 ~ {1,2,6}
%e 36: 100100 ~ {3,6}
%e 37: 100101 ~ {1,3,6}
%e 38: 100110 ~ {2,3,6}
%e 39: 100111 ~ {1,2,3,6}
%e 40: 101000 ~ {4,6}
%e 41: 101001 ~ {1,4,6}
%e 42: 101010 ~ {2,4,6}
%e 43: 101011 ~ {1,2,4,6}
%e 44: 101100 ~ {3,4,6}
%t bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
%t Select[Range[0,100],!(Length[bpe[#]]==1||CoprimeQ@@bpe[#])&]
%Y The version for prime indices is A316438.
%Y The version for standard compositions is A335236.
%Y Numbers whose binary indices are pairwise coprime or a singleton: A087087.
%Y Non-coprime partitions are counted by A335240.
%Y All of the following pertain to compositions in standard order (A066099):
%Y - Length is A000120.
%Y - Sum is A070939.
%Y - Product is A124758.
%Y - Reverse is A228351
%Y - GCD is A326674.
%Y - Heinz number is A333219.
%Y - LCM is A333226.
%Y Cf. A007360, A048793, A051424, A101268, A291166, A302569, A326675, A333227, A333228, A335235, A335239.
%K nonn
%O 1,2
%A _Gus Wiseman_, May 28 2020