login
Numbers k such that the k-th composition in standard order (A066099) is not a singleton nor pairwise coprime.
12

%I #9 May 30 2020 09:18:48

%S 0,10,21,22,26,34,36,40,42,43,45,46,53,54,58,69,70,73,74,76,81,82,84,

%T 85,86,87,88,90,91,93,94,98,100,104,106,107,109,110,117,118,122,130,

%U 136,138,139,141,142,146,147,148,149,150,153,154,156,160,162,163,164

%N Numbers k such that the k-th composition in standard order (A066099) is not a singleton nor pairwise coprime.

%C These are compositions whose product is strictly greater than the LCM of their parts.

%C The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

%H Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a>

%e The sequence together with the corresponding compositions begins:

%e 0: () 74: (3,2,2) 109: (1,2,1,2,1)

%e 10: (2,2) 76: (3,1,3) 110: (1,2,1,1,2)

%e 21: (2,2,1) 81: (2,4,1) 117: (1,1,2,2,1)

%e 22: (2,1,2) 82: (2,3,2) 118: (1,1,2,1,2)

%e 26: (1,2,2) 84: (2,2,3) 122: (1,1,1,2,2)

%e 34: (4,2) 85: (2,2,2,1) 130: (6,2)

%e 36: (3,3) 86: (2,2,1,2) 136: (4,4)

%e 40: (2,4) 87: (2,2,1,1,1) 138: (4,2,2)

%e 42: (2,2,2) 88: (2,1,4) 139: (4,2,1,1)

%e 43: (2,2,1,1) 90: (2,1,2,2) 141: (4,1,2,1)

%e 45: (2,1,2,1) 91: (2,1,2,1,1) 142: (4,1,1,2)

%e 46: (2,1,1,2) 93: (2,1,1,2,1) 146: (3,3,2)

%e 53: (1,2,2,1) 94: (2,1,1,1,2) 147: (3,3,1,1)

%e 54: (1,2,1,2) 98: (1,4,2) 148: (3,2,3)

%e 58: (1,1,2,2) 100: (1,3,3) 149: (3,2,2,1)

%e 69: (4,2,1) 104: (1,2,4) 150: (3,2,1,2)

%e 70: (4,1,2) 106: (1,2,2,2) 153: (3,1,3,1)

%e 73: (3,3,1) 107: (1,2,2,1,1) 154: (3,1,2,2)

%t stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;

%t Select[Range[0,100],!(Length[stc[#]]==1||CoprimeQ@@stc[#])&]

%Y The version for prime indices is A316438.

%Y The version for binary indices is A335237.

%Y The complement is A335235.

%Y The version with singletons allowed is A335239.

%Y Binary indices are pairwise coprime or a singleton: A087087.

%Y The version counting partitions is 1 + A335240.

%Y All of the following pertain to compositions in standard order:

%Y - Length is A000120.

%Y - The parts are row k of A066099.

%Y - Sum is A070939.

%Y - Product is A124758.

%Y - Reverse is A228351

%Y - GCD is A326674.

%Y - Heinz number is A333219.

%Y - LCM is A333226.

%Y Cf. A007360, A048793, A051424, A101268, A272919, A291166, A302569, A326675, A333227, A333228, A335238.

%K nonn

%O 1,2

%A _Gus Wiseman_, May 28 2020