login
A335053
Odd bi-unitary abundant numbers whose bi-unitary abundancy is closer to 2 than that of any smaller odd bi-unitary abundant number.
3
945, 25515, 46035, 49875, 83265, 354585, 359205, 361515, 366135, 382305, 389235, 396165, 400785, 403095, 407715, 414645, 416955, 423885, 430815, 437745, 442365, 13351635, 132335385, 159030135, 1756753845, 6561644355, 10394173335, 13455037365, 37456183215
OFFSET
1,1
COMMENTS
The bi-unitary abundancy of a number k is bsigma(k)/k, where bsigma(k) is the sum of bi-unitary divisors of k (A188999).
EXAMPLE
The bi-unitary abundancies of the first terms are 2.031..., 2.005..., 2.0019..., 2.0018..., 2.0015..., ...
MATHEMATICA
fun[p_, e_] := If[OddQ[e], (p^(e + 1) - 1)/(p - 1), (p^(e + 1) - 1)/(p - 1) - p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); seq = {}; r = 3; Do[s = bsigma[n]/n; If[s > 2 && s < r, AppendTo[seq, n]; r = s], {n, 1, 10^6, 2}]; seq
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 21 2020
STATUS
approved