login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the least integer b such that the fractions (b^0)/p, (b^1)/p, ..., (b^(r-1))/p where p is the n-th prime, produce the A006556(n) distinct cycles.
0

%I #61 Jan 28 2022 12:15:01

%S 1,2,2,1,2,2,1,1,1,1,3,2,3,2,1,2,1,1,2,7,2,3,2,3,1,2,2,2,1,1,3,1,2,2,

%T 1,3,2,2,1,2,1,1,7,1,2,3,2,1,2,1,1,7,7,3,1,1,1,6,2,3,2,2,2,11,1,2,2,1,

%U 2,2,2,7,1,2,1,1,1,2,3,7,1,2,7,1,3,2,3,3,1,2,2,13

%N a(n) is the least integer b such that the fractions (b^0)/p, (b^1)/p, ..., (b^(r-1))/p where p is the n-th prime, produce the A006556(n) distinct cycles.

%C With the exception of the prime numbers 2 and 5, the values of r mentioned above form the sequence A006556.

%C Detection of all different cycles of digits in the decimal expansions of 1/p, 2/p, ..., (p-1)/p where p=n-th prime. If for the n-th prime p the number of different cycles of digits is equal to r, then there will be the smallest integer b in the interval 0 < b < p with the following property: The fractions (b^0)/p, (b^1)/p, ..., (b^(r-1))/p will produce r different cycles of digits. In this case the term a(n) of the sequence becomes equal to b.

%e For n=13, prime(13)=41, there are A006556(13)=8 cycles.

%e With b=3, we get (normally, these fractions should be in the form (b^k mod p)/p):

%e frac(3^0 / 41) = 0.02439 (1)

%e frac(3^1 / 41) = 0.07317 (2)

%e frac(3^2 / 41) = 0.21951 (3)

%e frac(3^3 / 41) = 0.65853 (4)

%e frac(3^4 / 41) = 0.97560 (5)

%e frac(3^5 / 41) = 0.92682 (6)

%e frac(3^6 / 41) = 0.78048 (7)

%e frac(3^7 / 41) = 0.34146 (8=r)

%e So a(13) = 3.

%o (PARI) \\ default(realprecision, 1000)

%o nbc(p) = (p-1)/znorder(Mod(10, p));

%o len(p) = znorder(Mod(10, p));

%o pad(x, sz) = {while(#digits(x) != sz, x*=10); x;}

%o cmpc(x,y) = {if (x==y, return (0)); my(dx=digits(x), dy=digits(y), v=dx); for (k=1, #dx, v=vector(#v, k, if (k==#v, v[1], v[k+1])); if (v == dy, return (0));); return (1);}

%o decimals(x, sz) = pad(floor(1.0*10^sz*x), sz);

%o a(n) = {my(p=prime(n)); if ((p==2), return (1)); if ((p==5), return (2)); my(sz=len(p), nb=nbc(p), m=1); while (#vecsort(vector(f(p), k, decimals((m^(k-1) % p)/p, sz)),cmpc,8) != nb, m++); m;} \\ _Michel Marcus_, May 29 2020

%Y Cf. A006556.

%K nonn,base

%O 1,2

%A _George Plousos_, May 15 2020