Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jun 09 2020 22:12:14
%S 0,1,2,2,4,3,8,3,3,5,16,4,32,9,6,3,64,4,128,6,10,17,256,5,5,33,5,10,
%T 512,7,1024,4,18,65,12,4,2048,129,34,7,4096,11,8192,18,7,257,16384,5,
%U 9,6,66,34,32768,6,20,11,130,513,65536,8,131072,1025,11,4,36,19,262144,66,258,13,524288,5,1048576,2049,7,130
%N Number of steps needed to reach 1 when starting from n and iterating with A334870.
%C Distance of n from the root (1) in binary trees like A334860 and A334866.
%C Each n > 0 occurs 2^(n-1) times.
%C a(n) is the size of the inner lining of the integer partition with Heinz number A225546(n), which is also the size of the largest hook of the same partition. (After _Gus Wiseman_'s Apr 02 2019 comment in A252464).
%H Antti Karttunen, <a href="/A334871/b334871.txt">Table of n, a(n) for n = 1..10000</a>
%F a(1) = 0; for n > 1, a(n) = 1 + a(A334870(n)).
%F a(n) = A252464(A225546(n)).
%F a(n) = A048675(A007913(n)) + a(A008833(n)).
%F For n > 1, a(n) = 1 + A048675(A007913(n)) + a(A000188(n)).
%F For n > 1, a(n) = A070939(A334859(n)) = A070939(A334865(n)).
%F For all n >= 1, a(n) >= A299090(n).
%F For all n >= 1, a(n) >= A334872(n).
%o (PARI)
%o A334870(n) = if(issquare(n),sqrtint(n),my(c=core(n), m=n); forprime(p=2, , if(!(c % p), m/=p; break, m*=p)); (m));
%o A334871(n) = { my(s=0); while(n>1,s++; n = A334870(n)); (s); };
%o (PARI)
%o \\ Much faster:
%o A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
%o A334871(n) = { my(s=0); while(n>1, if(issquare(n), s++; n = sqrtint(n), s += A048675(core(n)); n /= core(n))); (s); };
%Y Cf. A007913, A008833, A070939, A225546, A252464, A299090, A334859, A334860, A334865, A334866, A334869, A334870, A334872.
%K nonn
%O 1,3
%A _Antti Karttunen_, Jun 08 2020