Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 19 2020 19:14:53
%S 0,2,3,4,4,5,5,6,6,6,5,7,5,7,7,8,6,8,7,8,8,7,7,9,8,7,9,9,7,9,7,10,8,8,
%T 9,10,7,9,8,10,8,10,9,9,10,9,8,11,10,10,9,9,9,11,9,11,10,9,8,11,9,9,
%U 11,12,9,10,9,10,10,11,8,12,9,9,11,11,10,10,9,12,12,10,9,12,10,11,10,11,8,12,10,11,10,10
%N a(n) = A064097(A003961(n)).
%C Completely additive because A003961 is fully multiplicative and A064097 is fully additive.
%H Antti Karttunen, <a href="/A334863/b334863.txt">Table of n, a(n) for n = 1..65537</a>
%F a(n) = A064097(A003961(n)).
%F a(1) = 0; and for n > 1, a(prime(k)) = A064097(prime(1+k)) for k-th prime, and a(n*m) = a(n) + a(m) if m,n > 1.
%o (PARI)
%o A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f);
%o A064097(n) = if(1==n,0,1+A064097(n-(n/vecmin(factor(n)[,1]))));
%o A334863(n) = A064097(A003961(n));
%o \\ Or alternatively as:
%o A334863(n) = { my(f=factor(n)); sum(k=1, #f~, f[k, 2]*A064097(prime(1+primepi(f[k, 1])))); };
%Y Cf. A003961, A064097, A334864.
%K nonn,less
%O 1,2
%A _Antti Karttunen_, May 19 2020