Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 May 14 2020 21:22:34
%S 0,0,1,0,1,1,1,0,2,1,1,1,1,1,2,0,1,2,2,1,2,1,1,1,2,1,3,1,2,2,1,0,2,1,
%T 2,2,2,2,2,1,1,2,2,1,3,1,1,1,2,2,2,1,2,3,2,1,3,2,2,2,1,1,3,0,2,2,2,1,
%U 2,2,2,2,2,2,3,2,2,2,2,1,4,1,1,2,2,2,3,1,2,3,2,1,2,1,3,1,1,2,3,2,2,2,1,1,3
%N a(n) = A334097(n) - A064415(n).
%C Completely additive because A064415 and A334097 are.
%H Antti Karttunen, <a href="/A334862/b334862.txt">Table of n, a(n) for n = 1..65537</a>
%F a(2) = 0, a(p) = A334097(p+1)-A064415(p-1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
%F a(n) = A334097(n) - A064415(n).
%F a(3^k) = k for all k>= 0.
%o (PARI)
%o A064415(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],f[k,2],f[k,2]*A064415(f[k,1]-1))); };
%o A334097(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],f[k,2],f[k,2]*A334097(f[k,1]+1))); };
%o A334862(n) = (A334097(n)-A064415(n));
%o \\ Or alternatively as:
%o A334862(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(A334097(f[k,1]+1)-A064415(f[k,1]-1)))); };
%Y Cf. A000079 (positions of zeros), A000244, A064415, A334097, A334861.
%K nonn
%O 1,9
%A _Antti Karttunen_, May 14 2020