The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A334850 Decimal expansion of the maximal curvature of y = Gamma(x), for x>0. 0

%I #10 Jun 23 2020 05:55:48

%S 7,7,6,4,2,3,7,1,3,7,1,4,8,3,2,4,2,5,9,8,5,6,9,8,2,0,6,2,6,0,0,9,0,3,

%T 6,4,2,3,6,4,3,2,1,7,3,7,9,8,2,7,1,0,6,7,5,9,1,2,0,1,9,9,6,9,9,5,0,7,

%U 3,6,6,0,0,8,8,4,8,1,0,5,1,1,4,3,7,8,0,2,2,1,6,4,1,3,6,2,3,9,6

%N Decimal expansion of the maximal curvature of y = Gamma(x), for x>0.

%C Each branch of y = Gamma(x) has a point of maximal curvature (MC), at which the osculating circle has minimal radius (R). The branch in Quadrant I has MC at (x, Gamma(x)), where x = 0.9757... and R = 0.77642... Details for 4 branches (shown by 1st Mathematica program):

%C For the branch -3 < x < -2:

%C MC at x=-2.6209004043183225054792567933147...

%C R = 0.1025411250345462193237149178953328755...

%C For the branch -2 < x < -1:

%C MC at x=-1.57452893040224357315540638154037...

%C R = 0.043652981140784797188517226949156690045...

%C For the branch -1 < x < 0:

%C MC at x=-0.50414409519766396393374935693160...

%C R = 0.0315571147317663900987190484592293666...

%C For the branch 0 < x:

%C MC at x=0.97574729311153379112462151102264...

%C R = 0.7764237137148324259856982062600903642...

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GammaFunction.html">Gamma Function</a>

%t (* FIRST program *)

%t g[x_] := Gamma[x]; p[k_, x_] := PolyGamma[k, x]

%t solns = Map[#[[1]][[1]] &, GatherBy[Map[{#[[2]], Rationalize[#[[2]], 10^-30]} &,

%t Select[Table[{nn, #, Accuracy[#]} &[x /. FindRoot[

%t 0 == (2 g[x]^2 p[0, x]^5 + 3 p[0, x] p[1, x] (-1 + g[x]^2 p[1, x]) +

%t p[0, x]^3 (-1 + 3 g[x]^2 p[1, x]) - (1 + g[x]^2 p[0, x]^2) p[2, x]), {x, nn},

%t WorkingPrecision -> 100]], {nn, -2.8, 2.5, .101}], #[[3]] > 40 &]], #[[2]] &]]

%t {coords, rads} = Chop[Transpose[Map[{{(-p[0, x] + x p[0, x]^2 - g[x]^2 p[0, x]^3 +

%t x p[1, x])/(p[0, x]^2 + p[1, x]), (1 + g[x]^2 (2 p[0, x]^2 + p[1, x]))/(g[x] (p[0, x]^2 + p[1, x]))}, Sqrt[(1 + g[x]^2 p[0, x]^2)^3/(g[x]^2 (p[0, x]^2 + p[1, x])^2)]} /. x -> # &, solns]]]

%t Show[Plot[g[x], {x, -3, 2}], Map[{Graphics[Circle[coords[[#]], rads[[#]]]],

%t Graphics[Point[coords[[#]]]]} &, Range[Length[rads]]],

%t AspectRatio -> Automatic, PlotRange -> {-4, 4}, ImageSize -> 600]

%t (* _Peter J. C. Moses_, Jun 17 2020 *)

%t (* Graphics output:: 4 osculating circles;

%t Numerical output: first 4 numbers are x-coordinates of touchpoints of osculating circles with graph of gamma function; next 8 numbers are in pairs: (x,y) for the centers of the four circles; last 4 numbers are radii of the 4 circles *)

%t (* SECOND program: animation of osculating circle *)

%t Animate[Show[cent = {(-PolyGamma[0, x] + x PolyGamma[0, x]^2 -

%t Gamma[x]^2 PolyGamma[0, x]^3 + x PolyGamma[1, x])/(PolyGamma[0, x]^2 + PolyGamma[1, x]), (1 + Gamma[x]^2 (2 PolyGamma[0, x]^2 + PolyGamma[1, x]))/(Gamma[x] (PolyGamma[0, x]^2 + PolyGamma[1, x]))}; rad = Sqrt[(1 +

%t Gamma[x]^2 PolyGamma[0, x]^2)^3/(Gamma[x]^2 (PolyGamma[0, x]^2 + PolyGamma[1, x])^2)]; Plot[Gamma[x], {x, 0, 4}],

%t Graphics[{PointSize[Large], Point[{x, Gamma[x]}]}],

%t Graphics[{PointSize[Large], Point[cent]}],

%t Graphics[Circle[cent, rad]], AxesOrigin -> {0, 0},

%t PlotRange -> {{0, 4}, {0, 6}}, ImageSize -> 400,

%t AspectRatio -> Automatic], {x, 0.4, 3.5}, AnimationRunning -> True]

%t (* _Peter J. C. Moses_, Jun 18 2020 *)

%Y Cf. A030171.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Jun 21 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 05:21 EDT 2024. Contains 372528 sequences. (Running on oeis4.)