login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the maximal curvature of y = Gamma(x), for x>0.
0

%I #10 Jun 23 2020 05:55:48

%S 7,7,6,4,2,3,7,1,3,7,1,4,8,3,2,4,2,5,9,8,5,6,9,8,2,0,6,2,6,0,0,9,0,3,

%T 6,4,2,3,6,4,3,2,1,7,3,7,9,8,2,7,1,0,6,7,5,9,1,2,0,1,9,9,6,9,9,5,0,7,

%U 3,6,6,0,0,8,8,4,8,1,0,5,1,1,4,3,7,8,0,2,2,1,6,4,1,3,6,2,3,9,6

%N Decimal expansion of the maximal curvature of y = Gamma(x), for x>0.

%C Each branch of y = Gamma(x) has a point of maximal curvature (MC), at which the osculating circle has minimal radius (R). The branch in Quadrant I has MC at (x, Gamma(x)), where x = 0.9757... and R = 0.77642... Details for 4 branches (shown by 1st Mathematica program):

%C For the branch -3 < x < -2:

%C MC at x=-2.6209004043183225054792567933147...

%C R = 0.1025411250345462193237149178953328755...

%C For the branch -2 < x < -1:

%C MC at x=-1.57452893040224357315540638154037...

%C R = 0.043652981140784797188517226949156690045...

%C For the branch -1 < x < 0:

%C MC at x=-0.50414409519766396393374935693160...

%C R = 0.0315571147317663900987190484592293666...

%C For the branch 0 < x:

%C MC at x=0.97574729311153379112462151102264...

%C R = 0.7764237137148324259856982062600903642...

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GammaFunction.html">Gamma Function</a>

%t (* FIRST program *)

%t g[x_] := Gamma[x]; p[k_, x_] := PolyGamma[k, x]

%t solns = Map[#[[1]][[1]] &, GatherBy[Map[{#[[2]], Rationalize[#[[2]], 10^-30]} &,

%t Select[Table[{nn, #, Accuracy[#]} &[x /. FindRoot[

%t 0 == (2 g[x]^2 p[0, x]^5 + 3 p[0, x] p[1, x] (-1 + g[x]^2 p[1, x]) +

%t p[0, x]^3 (-1 + 3 g[x]^2 p[1, x]) - (1 + g[x]^2 p[0, x]^2) p[2, x]), {x, nn},

%t WorkingPrecision -> 100]], {nn, -2.8, 2.5, .101}], #[[3]] > 40 &]], #[[2]] &]]

%t {coords, rads} = Chop[Transpose[Map[{{(-p[0, x] + x p[0, x]^2 - g[x]^2 p[0, x]^3 +

%t x p[1, x])/(p[0, x]^2 + p[1, x]), (1 + g[x]^2 (2 p[0, x]^2 + p[1, x]))/(g[x] (p[0, x]^2 + p[1, x]))}, Sqrt[(1 + g[x]^2 p[0, x]^2)^3/(g[x]^2 (p[0, x]^2 + p[1, x])^2)]} /. x -> # &, solns]]]

%t Show[Plot[g[x], {x, -3, 2}], Map[{Graphics[Circle[coords[[#]], rads[[#]]]],

%t Graphics[Point[coords[[#]]]]} &, Range[Length[rads]]],

%t AspectRatio -> Automatic, PlotRange -> {-4, 4}, ImageSize -> 600]

%t (* _Peter J. C. Moses_, Jun 17 2020 *)

%t (* Graphics output:: 4 osculating circles;

%t Numerical output: first 4 numbers are x-coordinates of touchpoints of osculating circles with graph of gamma function; next 8 numbers are in pairs: (x,y) for the centers of the four circles; last 4 numbers are radii of the 4 circles *)

%t (* SECOND program: animation of osculating circle *)

%t Animate[Show[cent = {(-PolyGamma[0, x] + x PolyGamma[0, x]^2 -

%t Gamma[x]^2 PolyGamma[0, x]^3 + x PolyGamma[1, x])/(PolyGamma[0, x]^2 + PolyGamma[1, x]), (1 + Gamma[x]^2 (2 PolyGamma[0, x]^2 + PolyGamma[1, x]))/(Gamma[x] (PolyGamma[0, x]^2 + PolyGamma[1, x]))}; rad = Sqrt[(1 +

%t Gamma[x]^2 PolyGamma[0, x]^2)^3/(Gamma[x]^2 (PolyGamma[0, x]^2 + PolyGamma[1, x])^2)]; Plot[Gamma[x], {x, 0, 4}],

%t Graphics[{PointSize[Large], Point[{x, Gamma[x]}]}],

%t Graphics[{PointSize[Large], Point[cent]}],

%t Graphics[Circle[cent, rad]], AxesOrigin -> {0, 0},

%t PlotRange -> {{0, 4}, {0, 6}}, ImageSize -> 400,

%t AspectRatio -> Automatic], {x, 0.4, 3.5}, AnimationRunning -> True]

%t (* _Peter J. C. Moses_, Jun 18 2020 *)

%Y Cf. A030171.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Jun 21 2020