login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by antidiagonals: T(n,k) = Sum_{i=1..n} binomial(1+i,2)^k.
7

%I #9 May 18 2020 18:59:31

%S 0,0,1,0,1,2,0,1,4,3,0,1,10,10,4,0,1,28,46,20,5,0,1,82,244,146,35,6,0,

%T 1,244,1378,1244,371,56,7,0,1,730,8020,11378,4619,812,84,8,0,1,2188,

%U 47386,108020,62003,13880,1596,120,9,0,1,6562,282124,1047386,867395,256484,35832,2892,165,10

%N Array read by antidiagonals: T(n,k) = Sum_{i=1..n} binomial(1+i,2)^k.

%H Andrew Howroyd, <a href="/A334781/b334781.txt">Table of n, a(n) for n = 0..1325</a>

%F T(n,k) = Sum_{i=0..2*(k-1)} A154283(k,i) * binomial(n+2+i, 2*k+i) for k > 0.

%e Array begins:

%e ===============================================================

%e n\k | 0 1 2 3 4 5 6 7

%e ----|----------------------------------------------------------

%e 0 | 0 0 0 0 0 0 0 0 ...

%e 1 | 1 1 1 1 1 1 1 1 ...

%e 2 | 2 4 10 28 82 244 730 2188 ...

%e 3 | 3 10 46 244 1378 8020 47386 282124 ...

%e 4 | 4 20 146 1244 11378 108020 1047386 10282124 ...

%e 5 | 5 35 371 4619 62003 867395 12438011 181141499 ...

%e 6 | 6 56 812 13880 256484 4951496 98204132 1982230040 ...

%e 7 | 7 84 1596 35832 871140 22161864 580094436 15475158552 ...

%e ...

%o (PARI) T(n,k) = {sum(i=1, n, binomial(1+i,2)^k)}

%Y Columns k=0..7 are A001477, A000292, A024166, A085438, A085439, A085440, A085441, A085442.

%Y Rows n=0..3 are A000004, A000012, A034472, A074508.

%Y Main diagonal is A249564(n > 0).

%Y Cf. A154283 (coefficients).

%K nonn,tabl

%O 0,6

%A _Andrew Howroyd_, May 15 2020