Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 20 2020 17:56:18
%S 2,2,1,4,4,1,2,2,2,2,3,6,6,3,5,8,2,2,2,2,8,5,6,3,3,6,6,3,3,6,1,1,1,1,
%T 7,10,4,4,4,4,10,7,1,1,1,1,3,9,3,12,3,6,3,6,6,3,6,3,12,3,9,3,1,1,1,1,
%U 10,7,4,4,7,10,4,4,1,1,1,1,1,1,1,1,4,4,10
%N Side length s of the central triangle of zeros in the XOR-triangle T(n).
%C An XOR-triangle T(n) is an inverted 0-1 triangle formed by choosing a top row the binary rendition of n and having each entry in subsequent rows be the XOR of the two values above it, i.e., A038554(n) applied recursively until we reach a single bit.
%C A334556 is the sequence of rotationally symmetrical T(n).
%C A central zero-triangle (CZT) is a field of contiguous 0-bits in T(n) surrounded on all sides by a layer of 1 bits, and generally k > 1 bits of any parity. Alternatively, these might be referred to as "central bubbles".
%H Michael De Vlieger, <a href="/A334770/b334770.txt">Table of n, a(n) for n = 1..10000</a>
%H Michael De Vlieger, <a href="http://vincico.com/seq/a334769.html">Central zero-triangles in rotationally symmetrical XOR-Triangles</a>, 2020.
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/X#XOR-triangles">Index entries for sequences related to XOR-triangles</a>
%e For n = 151, we have rotationally symmetrical T(151) as below, replacing 0 with "." for clarity:
%e 1 . . 1 . 1 1 1
%e 1 . 1 1 1 . .
%e 1 1 . . 1 .
%e . 1 . 1 1
%e 1 1 1 .
%e . . 1
%e . 1
%e 1
%e At the center of the figure we see a CZT with s = 2, ringed by 1s, with k = 2. Since 151 is the first term of A334769, a(1) = 2.
%e For n = 599, we have a rotationally symmetrical T(599) with s = 4 and k = 2.
%e 1 . . 1 . 1 . 1 1 1
%e 1 . 1 1 1 1 1 . .
%e 1 1 . . . . 1 .
%e . 1 . . . 1 1
%e 1 1 . . 1 .
%e . 1 . 1 1
%e 1 1 1 .
%e . . 1
%e . 1
%e 1
%e Since A334769(4) = 599, a(4) = 4.
%t Block[{f, s = Rest[Import["https://oeis.org/A334556/b334556.txt", "Data"][[All, -1]] ]}, f[n_] := NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[n, 2], Length@ # > 1 &]; Array[Block[{n = s[[#]]}, If[# == 0, Nothing, #] &@ FirstCase[MapIndexed[If[2 #2 > #3 + 1, Nothing, #1[[#2 ;; -#2]]] & @@ {#1, First[#2], Length@ #1} &, f[n][[1 ;; Ceiling[IntegerLength[#, 2]/(2 Sqrt[3])] + 3]] ], r_List /; FreeQ[r, 1] :> Length@ r] /. k_ /; MissingQ@ k -> 0] &, Lengths - 1, 2] ]
%Y Cf. A038554, A070939, A334556, A334769, A334771, A334796.
%K nonn
%O 1,1
%A _Michael De Vlieger_, May 10 2020