Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jun 23 2020 09:11:51
%S 0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,48,48,0,0,0,0,144,240,144,0,0,0,0,
%T 348,716,716,348,0,0,0,0,700,1712,2100,1712,700,0,0,0,0,1280,3404,
%U 4984,4984,3404,1280,0,0,0,0,2144,6176,9900,11604,9900,6176,2144,0,0,0,0,3400,10336,17936,22936,22936,17936,10336,3400,0,0
%N Array read by antidiagonals: T(n,k) (n>=1, k>=1) = number of ways to select four points from an n X k grid so that three of them form a triangle of nonzero area and the extra point is strictly inside the triangle.
%C Computed by _Tom Duff_, Jun 15 2020
%H Tom Duff, <a href="/A334708/a334708_3.txt">Data for tables A334708, A334709, A334710, A334711 for grids of size up to 192 X 192</a>
%e The initial rows of the array are:
%e 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
%e 0, 0, 8, 48, 144, 348, 700, 1280, 2144, 3400, 5120, 7440, ...
%e 0, 0, 48, 240, 716, 1712, 3404, 6176, 10336, 16288, 24480, 35504, ...
%e 0, 0, 144, 716, 2100, 4984, 9900, 17936, 29924, 47080, 70700, 102460, ...
%e 0, 0, 348, 1712, 4984, 11604, 22936, 41372, 68844, 108132, 161964, 234228, ...
%e 0, 0, 700, 3404, 9900, 22936, 45184, 81320, 135192, 212152, 317492, 458812, ...
%e 0, 0, 1280, 6176, 17936, 41372, 81320, 145648, 241544, 378400, 565636, 816520, ...
%e 0, 0, 2144, 10336, 29924, 68844, 135192, 241544, 399656, 625232, 933808, 1346928, ...
%e 0, 0, 3400, 16288, 47080, 108132, 212152, 378400, 625232, 976552, 1457172, 2100112, ...
%e ...
%e The initial antidiagonals are:
%e 0,
%e 0, 0,
%e 0, 0, 0,
%e 0, 0, 0, 0,
%e 0, 0, 8, 0, 0,
%e 0, 0, 48, 48, 0, 0,
%e 0, 0, 144, 240, 144, 0, 0,
%e 0, 0, 348, 716, 716, 348, 0, 0,
%e 0, 0, 700, 1712, 2100, 1712, 700, 0, 0,
%e 0, 0, 1280, 3404, 4984, 4984, 3404, 1280, 0, 0,
%e 0, 0, 2144, 6176, 9900, 11604, 9900, 6176, 2144, 0, 0,
%e 0, 0, 3400, 10336, 17936, 22936, 22936, 17936, 10336, 3400, 0, 0,
%e ...
%Y The main diagonal is A334712.
%Y Triangles A334708, A334709, A334710, A334711 give the counts for the four possible arrangements of four points.
%Y For three points there are just two possible arrangements: see A334704 and A334705.
%K nonn,tabl
%O 1,13
%A _N. J. A. Sloane_, Jun 15 2020