Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #51 Jan 01 2024 22:46:53
%S 1,6,24,54,124,214,382,598,950,1334,1912,2622,3624,4690,6096,7686,
%T 9764,12010,14866,18026,21904,25918,30818,36246,42654,49246,57006,
%U 65334,75098,85414,97384,110138,124726,139642,156286,174018,194106,214570,237534,261666,288686,316770,348048,380798,416524,452794,492830
%N Consider the figure made up of a row of n adjacent congruent rectangles, with diagonals of all possible rectangles drawn; a(n) = number of interior vertices where exactly two lines cross.
%C It would be nice to have a formula or recurrence. - _N. J. A. Sloane_, Jun 22 2020
%H Lars Blomberg, <a href="/A334701/b334701.txt">Table of n, a(n) for n = 1..500</a>
%H Lars Blomberg, <a href="/A334701/a334701.txt">Array (s,n) of the number of internal vertices where exactly s=2..501 lines cross in a figure made up of a row of n=1..500 adjacent congruent rectangles, with diagonals of all possible rectangles drawn. Rows are stored comma-separated.</a>
%H Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, <a href="http://neilsloane.com/doc/rose_5.pdf">Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids</a>, (2020). Also arXiv:2009.07918.
%H Scott R. Shannon, <a href="/A331452/a331452_6.png">Colored illustration showing regions for n=1</a>
%H Scott R. Shannon, <a href="/A331755/a331755.png">Images of vertices for n=1</a>.
%H Scott R. Shannon, <a href="/A331452/a331452_7.png">Colored illustration showing regions for n=2</a>
%H Scott R. Shannon, <a href="/A331755/a331755_1.png">Images of vertices for n=2</a>.
%H Scott R. Shannon, <a href="/A331452/a331452_8.png">Colored illustration showing regions for n=3</a>
%H Scott R. Shannon, <a href="/A331755/a331755_2.png">Images of vertices for n=3</a>.
%H Scott R. Shannon, <a href="/A331452/a331452_9.png">Colored illustration showing regions for n=4</a>
%H Scott R. Shannon, <a href="/A331755/a331755_3.png">Images of vertices for n=4</a>.
%H Scott R. Shannon, <a href="/A331452/a331452_10.png">Colored illustration showing regions for n=5</a>
%H Scott R. Shannon, <a href="/A331755/a331755_7.png">Images of vertices for n=5</a>
%H Scott R. Shannon, <a href="/A331452/a331452_11.png">Colored illustration showing regions for n=6</a>
%H Scott R. Shannon, <a href="/A331755/a331755_8.png">Images of vertices for n=6</a>
%H Scott R. Shannon, <a href="/A331755/a331755_11.png">Images of vertices for n=7</a>
%H Scott R. Shannon, <a href="/A331755/a331755_10.png">Images of vertices for n=8</a>
%H Scott R. Shannon, <a href="/A331755/a331755_4.png">Images of vertices for n=9</a>.
%H Scott R. Shannon, <a href="/A331755/a331755_5.png">Images of vertices for n=11</a>.
%H Scott R. Shannon, <a href="/A331755/a331755_6.png">Images of vertices for n=14</a>.
%H <a href="/index/St#Stained">Index entries for sequences related to stained glass windows</a>
%F Conjecture: As n -> oo, a(n) ~ C*n^4/Pi^2, where C is about 0.95 (compare A115004, A331761). - _N. J. A. Sloane_, Jul 03 2020
%Y Column 4 of array in A333275.
%Y Cf. A306302, A331755, A290131, A333274.
%Y See also A115004, A331761.
%K nonn
%O 1,2
%A _Scott R. Shannon_ and _N. J. A. Sloane_, May 30 2020
%E More terms from _Lars Blomberg_, Jun 17 2020