login
A334616
Number of 2-colorings of an n X n X n grid, up to rotational symmetry.
1
2, 23, 5605504, 768614338020786176, 1772303994379887844373479205703254016, 4388012152856549445746584486819723041078276071004502223505850368, 746581580725934736852480760189481426040548499078234470565449222456544381939194522144498021170453413888
OFFSET
1,1
COMMENTS
The cycle index of the permutation group is given by:
Even n: (1/24)*(s_1^n^3 + 8*s_1^n*s_3^((n^3-n)/3) + 6*s_2^(n^3/2) + 6*s_4^(n^3/4) + 3*s_2^(n^3/2));
Odd n: (1/24)*(s_1^n^3 + 8*s_1^n*s_3^((n^3-n)/3) + 6*s_1^n*s_2^((n^3-n)/2) + 6*s_1^n*s_4^((n^3-n)/4) + 3*s_1^n*s_2^((n^3-n)/2)).
FORMULA
a(n) = (1/24)*(2^n^3 + 6*2^((n^3)/4) + 9*2^((n^3)/2) + 8*2^((n^3-n)/3+n)) for n even;
a(n) = (1/24)*(2^n^3 + 6*2^(((n^3)-n)/4+n) + 9*2^(((n^3)-n)/2+n) + 8*2^(((n^3-n)/3)+n)) for n odd.
EXAMPLE
a(2)=23 from:
00 00
00 00
------------------------------------------
10 00
00 00
------------------------------------------
11 00 10 00 10 01 10 00
00 00 01 00 00 00 00 01
------------------------------------------
11 00 11 00 01 10
10 00 00 10 10 00
------------------------------------------
11 00 11 00 01 10 11 00 11 10
11 00 10 01 10 01 00 11 10 00
------------------------------------------
00 11 00 11 10 01
01 11 11 01 01 11
------------------------------------------
00 11 01 11 01 10 01 11
11 11 10 11 11 11 11 10
------------------------------------------
01 11
11 11
------------------------------------------
11 11
11 11
------------------------------------------
An example for the 2-coloring of the 3 X 3 X 3 grid can be written as:
110 000 111
100 000 111
100 000 111
This coloring is equivalent to:
111 000 111
001 000 111
000 000 111
because you can get this configuration by rotating the first coloring by 90 degrees.
But it is different from:
011 000 111
001 000 111
001 000 111
because reflections are not considered.
CROSSREFS
This is the three-dimensional version of A047937.
Cf. A000543.
Sequence in context: A110714 A067837 A358384 * A089987 A162605 A118812
KEYWORD
nonn
AUTHOR
Paul Oelkers, Sep 08 2020
EXTENSIONS
More terms from Stefano Spezia, Sep 09 2020
STATUS
approved