OFFSET
1,1
COMMENTS
The cycle index of the permutation group is given by:
Even n: (1/24)*(s_1^n^3 + 8*s_1^n*s_3^((n^3-n)/3) + 6*s_2^(n^3/2) + 6*s_4^(n^3/4) + 3*s_2^(n^3/2));
Odd n: (1/24)*(s_1^n^3 + 8*s_1^n*s_3^((n^3-n)/3) + 6*s_1^n*s_2^((n^3-n)/2) + 6*s_1^n*s_4^((n^3-n)/4) + 3*s_1^n*s_2^((n^3-n)/2)).
LINKS
FORMULA
a(n) = (1/24)*(2^n^3 + 6*2^((n^3)/4) + 9*2^((n^3)/2) + 8*2^((n^3-n)/3+n)) for n even;
a(n) = (1/24)*(2^n^3 + 6*2^(((n^3)-n)/4+n) + 9*2^(((n^3)-n)/2+n) + 8*2^(((n^3-n)/3)+n)) for n odd.
EXAMPLE
a(2)=23 from:
00 00
00 00
------------------------------------------
10 00
00 00
------------------------------------------
11 00 10 00 10 01 10 00
00 00 01 00 00 00 00 01
------------------------------------------
11 00 11 00 01 10
10 00 00 10 10 00
------------------------------------------
11 00 11 00 01 10 11 00 11 10
11 00 10 01 10 01 00 11 10 00
------------------------------------------
00 11 00 11 10 01
01 11 11 01 01 11
------------------------------------------
00 11 01 11 01 10 01 11
11 11 10 11 11 11 11 10
------------------------------------------
01 11
11 11
------------------------------------------
11 11
11 11
------------------------------------------
An example for the 2-coloring of the 3 X 3 X 3 grid can be written as:
110 000 111
100 000 111
100 000 111
This coloring is equivalent to:
111 000 111
001 000 111
000 000 111
because you can get this configuration by rotating the first coloring by 90 degrees.
But it is different from:
011 000 111
001 000 111
001 000 111
because reflections are not considered.
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Oelkers, Sep 08 2020
EXTENSIONS
More terms from Stefano Spezia, Sep 09 2020
STATUS
approved