login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Eventual period of a single cell in rule 107 cellular automaton in a cyclic universe of width n.
1

%I #14 May 10 2020 04:30:19

%S 2,2,3,2,15,2,28,2,36,20,11,12,117,28,60,8,68,36,76,20,84,44,92,24,

%T 100,52,108,28,116,60,124,32,132,68,140,36,148,76,156,40,164,84,172,

%U 44,180,92,188,48,196,100,204,52,212,108,220,56,228,116,236,60,244,124

%N Eventual period of a single cell in rule 107 cellular automaton in a cyclic universe of width n.

%C _Bradley Klee_ computed a(1)-a(10).

%D Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

%F Conjectures from _Colin Barker_, May 09 2020: (Start)

%F G.f.: x*(2 + 2*x + 3*x^2 + 2*x^3 + 11*x^4 - 2*x^5 + 22*x^6 - 2*x^7 + 8*x^8 + 18*x^9 - 42*x^10 + 10*x^11 + 60*x^12 - 10*x^13 + 66*x^14 - 14*x^15 - 130*x^16 - 33*x^18 + 16*x^19 + 65*x^20 - 8*x^23) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2).

%F a(n) = 2*a(n-4) - a(n-8) for n>24.

%F (End)

%Y Cf. A180001, A334496, A334499-A334515.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, May 05 2020

%E More terms from _Jinyuan Wang_, May 09 2020