Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #20 Nov 30 2020 16:23:12
%S 1,4,1,6,2,1,12,6,2,1,10,4,3,2,1,24,10,8,3,2,1,14,12,5,4,3,2,1,32,14,
%T 12,10,4,3,2,1,27,8,7,6,5,4,3,2,1,40,27,16,14,12,5,4,3,2,1,22,20,18,8,
%U 7,6,5,4,3,2,1,72,22,20,18,16,14,6,5,4,3,2,1,26,24,11,10,9,8,7,6,5,4,3,2,1
%N Square array read by antidiagonals upwards: T(n,k) is the sum of all parts of all partitions of n into consecutive parts that differ by k, with n >= 1, k >= 0.
%F T(n,k) = n*A323345(n,k).
%e Array begins:
%e k 0 1 2 3 4 5 6 7 8 9 10
%e n +------------------------------------------------
%e 1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 2 | 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
%e 3 | 6, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
%e 4 | 12, 4, 8, 4, 4, 4, 4, 4, 4, 4, 4, ...
%e 5 | 10, 10, 5, 10, 5, 5, 5, 5, 5, 5, 5, ...
%e 6 | 24, 12, 12, 6, 12, 6, 6, 6, 6, 6, 6, ...
%e 7 | 14, 14, 7, 14, 7, 14, 7, 7, 7, 7, 7, ...
%e 8 | 32, 8, 16, 8, 16, 8, 16, 8, 8, 8, 8, ...
%e 9 | 27, 27, 18, 18, 9, 18, 9, 18, 9, 9, 9, ...
%e 10 | 40, 20, 20, 10, 20, 20, 20, 10, 20, 10, 10, ...
%e ...
%t nmax = 13;
%t col[k_] := col[k] = CoefficientList[Sum[x^(n(k n - k + 2)/2 - 1)/(1 - x^n), {n, 1, nmax}] + O[x]^nmax, x];
%t T[n_, k_] := n col[k][[n]];
%t Table[T[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* _Jean-François Alcover_, Nov 30 2020 *)
%Y Columns k: A038040 (k=0), A245579 (k=1), A060872 (k=2), A334463 (k=3), A327262 (k=4), A334733 (k=5), A334953 (k=6).
%Y Every diagonal starting with 1 gives A000027.
%Y Sequences of number of parts related to column k: A000203 (k=0), A204217 (k=1), A066839 (k=2) (conjectured), A330889 (k=3), A334464 (k=4), A334732 (k=5), A334949 (k=6).
%Y Sequences of number of partitions related to column k: A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), A334461 (k=4), A334541 (k=5), A334948 (k=6).
%Y Polygonal numbers related to column k: A001477 (k=0), A000217 (k=1), A000290 (k=2), A000326 (k=3), A000384 (k=4), A000566 (k=5), A000567 (k=6).
%Y Cf. A245579, A323345, A334466.
%K nonn,tabl
%O 1,2
%A _Omar E. Pol_, May 05 2020