%I #20 Sep 22 2023 08:46:46
%S 1,2,1,1,3,1,2,1,1,1,4,1,3,2,2,1,1,2,1,1,1,1,5,1,4,2,3,1,1,3,1,2,2,1,
%T 1,1,2,1,1,1,1,1,6,1,5,2,4,3,3,1,1,4,1,2,3,2,2,2,1,1,1,3,1,1,2,2,1,1,
%U 1,1,2,1,1,1,1,1,1,7,1,6,2,5,3,4,1,1,5
%N Irregular triangle whose reversed rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.
%C First differs from A036036 for reversed partitions of 9. Namely, this sequence has (2,2,5) before (1,4,4), while A036036 has (1,4,4) before (2,2,5).
%H Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%e The sequence of all partitions begins:
%e () (2,3) (1,1,1,1,2) (1,1,1,2,2)
%e (1) (1,1,3) (1,1,1,1,1,1) (1,1,1,1,1,2)
%e (2) (1,2,2) (7) (1,1,1,1,1,1,1)
%e (1,1) (1,1,1,2) (1,6) (8)
%e (3) (1,1,1,1,1) (2,5) (1,7)
%e (1,2) (6) (3,4) (2,6)
%e (1,1,1) (1,5) (1,1,5) (3,5)
%e (4) (2,4) (1,2,4) (4,4)
%e (1,3) (3,3) (1,3,3) (1,1,6)
%e (2,2) (1,1,4) (2,2,3) (1,2,5)
%e (1,1,2) (1,2,3) (1,1,1,4) (1,3,4)
%e (1,1,1,1) (2,2,2) (1,1,2,3) (2,2,4)
%e (5) (1,1,1,3) (1,2,2,2) (2,3,3)
%e (1,4) (1,1,2,2) (1,1,1,1,3) (1,1,1,5)
%e This sequence can also be interpreted as the following triangle:
%e 0
%e (1)
%e (2)(11)
%e (3)(12)(111)
%e (4)(13)(22)(112)(1111)
%e (5)(14)(23)(113)(122)(1112)(11111)
%e Taking Heinz numbers (A334438) gives:
%e 1
%e 2
%e 3 4
%e 5 6 8
%e 7 10 9 12 16
%e 11 14 15 20 18 24 32
%e 13 22 21 25 28 30 27 40 36 48 64
%e 17 26 33 35 44 42 50 45 56 60 54 80 72 96 128
%t revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]<Length[c],OrderedQ[{c,f}]];
%t Join@@Reverse/@Join@@Table[Sort[IntegerPartitions[n],revlensort],{n,0,8}]
%o (PARI) A334442_row(n)=vecsort(partitions(n),p->concat(#p,-Vecrev(p))) \\ Rows of triangle defined in EXAMPLE (all partitions of n). Wrap into [Vec(p)|p<-...] to avoid "Vecsmall". - _M. F. Hasler_, May 14 2020
%Y Row lengths are A036043.
%Y The version for reversed partitions is A334301.
%Y The version for colex instead of revlex is A334302.
%Y Taking Heinz numbers gives A334438.
%Y The version with rows reversed is A334439.
%Y Ignoring length gives A335122.
%Y Lexicographically ordered reversed partitions are A026791.
%Y Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
%Y Partitions in increasing-length colex order (sum/length/colex) are A036037.
%Y Reverse-lexicographically ordered partitions are A080577.
%Y Lexicographically ordered partitions are A193073.
%Y Partitions in colexicographic order (sum/colex) are A211992.
%Y Sorting partitions by Heinz number gives A296150.
%Y Cf. A026791, A112798, A124734, A129129, A185974, A228100, A228531, A296774, A334433, A334435, A334436.
%K nonn,tabf
%O 0,2
%A _Gus Wiseman_, May 07 2020