Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 22 2023 07:53:08
%S 1,2,3,4,5,6,8,7,9,10,12,16,11,15,14,18,20,24,32,13,25,21,22,27,30,28,
%T 36,40,48,64,17,35,33,26,45,50,42,44,54,60,56,72,80,96,128,19,49,55,
%U 39,34,75,63,70,66,52,81,90,100,84,88,108,120,112,144,160,192,256
%N Heinz numbers of all reversed integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.
%C First differs from A334433 at a(75) = 99, A334433(75) = 98.
%C First differs from A334436 at a(22) = 22, A334436(22) = 27.
%C A permutation of the positive integers.
%C Reversed integer partitions are finite weakly increasing sequences of positive integers.
%C This is the Abramowitz-Stegun ordering of reversed partitions (A185974) except that the finer order is reverse-lexicographic instead of lexicographic. The version for non-reversed partitions is A334438.
%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%C As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0.
%H Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%F A001222(a(n)) = A036043(n).
%e The sequence of terms together with their prime indices begins:
%e 1: {} 32: {1,1,1,1,1} 42: {1,2,4}
%e 2: {1} 13: {6} 44: {1,1,5}
%e 3: {2} 25: {3,3} 54: {1,2,2,2}
%e 4: {1,1} 21: {2,4} 60: {1,1,2,3}
%e 5: {3} 22: {1,5} 56: {1,1,1,4}
%e 6: {1,2} 27: {2,2,2} 72: {1,1,1,2,2}
%e 8: {1,1,1} 30: {1,2,3} 80: {1,1,1,1,3}
%e 7: {4} 28: {1,1,4} 96: {1,1,1,1,1,2}
%e 9: {2,2} 36: {1,1,2,2} 128: {1,1,1,1,1,1,1}
%e 10: {1,3} 40: {1,1,1,3} 19: {8}
%e 12: {1,1,2} 48: {1,1,1,1,2} 49: {4,4}
%e 16: {1,1,1,1} 64: {1,1,1,1,1,1} 55: {3,5}
%e 11: {5} 17: {7} 39: {2,6}
%e 15: {2,3} 35: {3,4} 34: {1,7}
%e 14: {1,4} 33: {2,5} 75: {2,3,3}
%e 18: {1,2,2} 26: {1,6} 63: {2,2,4}
%e 20: {1,1,3} 45: {2,2,3} 70: {1,3,4}
%e 24: {1,1,1,2} 50: {1,3,3} 66: {1,2,5}
%e Triangle begins:
%e 1
%e 2
%e 3 4
%e 5 6 8
%e 7 9 10 12 16
%e 11 15 14 18 20 24 32
%e 13 25 21 22 27 30 28 36 40 48 64
%e 17 35 33 26 45 50 42 44 54 60 56 72 80 96 128
%e This corresponds to the following tetrangle:
%e 0
%e (1)
%e (2)(11)
%e (3)(12)(111)
%e (4)(22)(13)(112)(1111)
%e (5)(23)(14)(122)(113)(1112)(11111)
%t revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]<Length[c],OrderedQ[{c,f}]];
%t Table[Times@@Prime/@#&/@Sort[Sort/@IntegerPartitions[n],revlensort],{n,0,8}]
%Y Row lengths are A000041.
%Y The dual version (sum/length/lex) is A185974.
%Y Compositions under the same order are A296774 (triangle).
%Y The constructive version is A334302.
%Y Ignoring length gives A334436.
%Y The version for non-reversed partitions is A334438.
%Y Partitions in this order (sum/length/revlex) are A334439.
%Y Lexicographically ordered reversed partitions are A026791.
%Y Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
%Y Partitions in increasing-length colex order (sum/length/colex) are A036037.
%Y Reverse-lexicographically ordered partitions are A080577.
%Y Sorting reversed partitions by Heinz number gives A112798.
%Y Graded lexicographically ordered partitions are A193073.
%Y Partitions in colexicographic (sum/colex) order are A211992.
%Y Graded Heinz numbers are given by A215366.
%Y Sorting partitions by Heinz number gives A296150.
%Y Cf. A056239, A124734, A129129, A228100, A228531, A333219, A333220, A334301, A334433, A334434, A334437.
%K nonn,tabf
%O 0,2
%A _Gus Wiseman_, May 02 2020