Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jun 27 2020 11:53:40
%S 9,5,9,1,4,2,7,1,1,0,4,3,2,0,7,3,4,4,9,9,9,7,0,5,9,1,3,7,5,0,2,0,9,8,
%T 1,5,3,6,5,4,2,3,6,5,9,7,7,4,4,5,7,1,0,6,3,4,8,6,2,6,6,4,3,2,8,0,6,8,
%U 5,4,9,8,8,3,8,6,4,2,2,3,8,9,3,4,1,2,3,9,3,7,7,5,3,7,4,3,9,7,1,3,5,8,1,1,1,3
%N Decimal expansion of Product_{k>=1} (1 - 1/A002145(k)^3).
%D B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.
%H Ph. Flajolet and I. Vardi, <a href="http://algo.inria.fr/flajolet/Publications/landau.ps">Zeta function expansions of some classical constants</a>, Feb 18 1996, p. 7-8.
%H R. J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, p. 26 (case 4 3 3 = 1/A334427).
%F A334426 / A334427 = 28*zeta(3)/Pi^3.
%F A334425 * A334427 = 8/(7*zeta(3)).
%e 0.959142711043207344999705913750209815365423...
%Y Cf. A002145, A243379, A334448, A334452.
%K nonn,cons
%O 0,1
%A _Vaclav Kotesovec_, Apr 30 2020
%E More digits from _Vaclav Kotesovec_, Jun 27 2020